RINGS WHOSE SEMIGROUP OF RIGHT IDEALS IS J -TRIVIAL
Year 2011,
Volume: 10 Issue: 10, 151 - 161, 01.12.2011
Henry E. Heatherly
Ralph P. Tucci
Abstract
A semigroup S is J -trivial if any two distinct elements of S must
generate distinct ideals of S. We investigate this condition for the semigroup
of all right ideals of a ring under right ideal multiplication. There is a rich interplay
between the underlying ring and the semigroup of all of its right ideals.
References
- G. F. Birkenmeier, Idempotents and completely semiprime ideals, Comm. Al- gebra, 11 (1983), 567–580.
- B. Brown and N. H. McCoy, Rings with unit element which contain a given ring, Duke Math. J., 13 (1956), 9–20.
- A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. I, Mathematical Surveys of the American Mathematical Society no.7, Providence, R. I., 1961.
- N. Divinsky, Rings and Radicals, Univ. Toronto Press, Toronto, 1965.
- J,. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc., 38 (1932), 85–88.
- K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
- H. E. Heatherly and R. P. Tucci, The semigroup of right ideals of a ring, Math. Pannon., 18(1) (2007), 19–26.
- H. E. Heatherly, K. A. Kosler, and R. P. Tucci, Semigroups of ideals of right weakly regular ring, JP J. Algebra Number Theory Appl., 15 (2009), 89–100.
- H. E. Heatherly and R. P. Tucci, Right weakly regular rings: A Survey, in Ring and Module Theory by T. Albu, G. F. Birkenmeier, A. Erdo˘gan, and A. Tercan, eds., Springer Verlag Trends in Mathematics 2010, Basel, 115–124.
- S. K. Jain and S. Jain, Restricted regular rings, Math. Z., 121 (1971), 51–54.
- A. Kert´esz, Lectures on Artinian Rings, Akademiai Kiado, Budapest, 1987.
- J. E. Pin, Varieties of Formal Languages, Plenum Press, New York, 1986.
- T. Saito,J -trivial subsemigroups of finite full transformation semigroups, Semigroup Forum, 57 (1998), 60–68.
- A. Smoktunowicz, A simple nil ring exists, Comm. Algebra, 30 (2002), 27–59.
- F. A. Szasz, Radicals of Rings, John Wiley and Sons, New York, 1981.
- A. Tuganbaev, Rings Close to Regular, Kluwer Academic Publ., Dordrecht, The Netherlands, 2002. Henry E. Heatherly
- Department of Mathematics University of Louisiana at Lafayette Lafayette, Louisiana 70504 e-mail: heh5820@louisiana.edu Ralph P. Tucci
- Department of Mathematical Sciences Loyola University New Orleans New Orleans, LA. 70118 e-mail: tucci@loyno.edu
Year 2011,
Volume: 10 Issue: 10, 151 - 161, 01.12.2011
Henry E. Heatherly
Ralph P. Tucci
References
- G. F. Birkenmeier, Idempotents and completely semiprime ideals, Comm. Al- gebra, 11 (1983), 567–580.
- B. Brown and N. H. McCoy, Rings with unit element which contain a given ring, Duke Math. J., 13 (1956), 9–20.
- A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. I, Mathematical Surveys of the American Mathematical Society no.7, Providence, R. I., 1961.
- N. Divinsky, Rings and Radicals, Univ. Toronto Press, Toronto, 1965.
- J,. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc., 38 (1932), 85–88.
- K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
- H. E. Heatherly and R. P. Tucci, The semigroup of right ideals of a ring, Math. Pannon., 18(1) (2007), 19–26.
- H. E. Heatherly, K. A. Kosler, and R. P. Tucci, Semigroups of ideals of right weakly regular ring, JP J. Algebra Number Theory Appl., 15 (2009), 89–100.
- H. E. Heatherly and R. P. Tucci, Right weakly regular rings: A Survey, in Ring and Module Theory by T. Albu, G. F. Birkenmeier, A. Erdo˘gan, and A. Tercan, eds., Springer Verlag Trends in Mathematics 2010, Basel, 115–124.
- S. K. Jain and S. Jain, Restricted regular rings, Math. Z., 121 (1971), 51–54.
- A. Kert´esz, Lectures on Artinian Rings, Akademiai Kiado, Budapest, 1987.
- J. E. Pin, Varieties of Formal Languages, Plenum Press, New York, 1986.
- T. Saito,J -trivial subsemigroups of finite full transformation semigroups, Semigroup Forum, 57 (1998), 60–68.
- A. Smoktunowicz, A simple nil ring exists, Comm. Algebra, 30 (2002), 27–59.
- F. A. Szasz, Radicals of Rings, John Wiley and Sons, New York, 1981.
- A. Tuganbaev, Rings Close to Regular, Kluwer Academic Publ., Dordrecht, The Netherlands, 2002. Henry E. Heatherly
- Department of Mathematics University of Louisiana at Lafayette Lafayette, Louisiana 70504 e-mail: heh5820@louisiana.edu Ralph P. Tucci
- Department of Mathematical Sciences Loyola University New Orleans New Orleans, LA. 70118 e-mail: tucci@loyno.edu