BibTex RIS Cite

RELATIVE ASCENT AND DESCENT IN A DOMAIN EXTENSION

Year 2010, Volume: 7 Issue: 7, 34 - 46, 01.06.2010

Abstract

In this study we continue to investigate the ascent and descent of valuation domains, PVDs, GCD-domains, ∗-domains, ∗∗-domains, locally ∗-
domains, URDs, UFDs, RBFDs, CK -domains, BVDs, CHFDs, and a particular case of LHFDs for domain extensions A ⊆ B relative to the Condition 1: “Let A ⊆ B be a unitary commutative ring extension. For each b ∈ B there exist u ∈ U(B) and a ∈ A such that b = au” and with the further assumption that the conductor ideal A : B is a maximal ideal in A.

References

  • D. D. Anderson and J. L. Mott, Cohen-Kaplansky domains: Integral domains with a finite number of irreducible elements, J. Algebra, 148 (1992), 17-41.
  • D. D. Anderson and D. F. Anderson, Elasticity of factorizations in integral domains, J. Pure Appl. Algebra, 80 (1992), 217-235.
  • D. D. Anderson, D. F. Anderson and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra, 69 (1990), 1-19.
  • D. D. Anderson, D. F. Anderson and M. Zafrullah, Factorization in integral domains, II , J. Algebra, 152 (1992), 78-93.
  • D. F. Anderson and S. T. Chapman, Overrings of half-factorial domains II , Comm. Algebra, 23(11) (1995), 3961-3976.
  • A. Badawi, Remarks on pseudo-valuation rings, Comm. Algebra, 28(5) (2000), 2358.
  • J. Boynton, Pullback of arithmetical rings, Comm. Algebra, 35 (9)(2007), 2671
  • S. T. Chapman and W. W. Smith, On the HFD, CHFD and K-HFD properties in Dedekind domains, Comm. Algebra, 20 (7) (1992), 1955-1987.
  • P. M. Cohn, Bezeout rings and their subrings, Proc. Camb. Phil., Soc. 64 (1968), 251-264.
  • A. Grams, Atomic domains and the ascending chain condition for principal ideals, Proc. Camb. Phil. Soc., 75 (1974), 321-329.
  • J. R. Hedstorm and E G. Houston, Pseudo-valuation domains, Pacific J. Math., (1)(1978), 137-147.
  • E. Houston and J. Taylor, Arithmetic properties in pullbacks, J. Algebra, 310 (2007), 235-260.
  • H. C. Hutchins, Examples of commutative rings, Polygonal Publishing House, Passaic, NJ 07055 USA, 1981.
  • H. Kim, Examples of Half-factorial domains, Canad. Math. Bull., Vol., 43(3) (2000), 362-367.
  • J. Maney, Boundary valuation domains, J. Algebra, 273 (2004), 373-383.
  • N. Radu, S. O. Ibrahim Al-Salihi and T. Shah, Ascend and descend of factor- ization properties, Rev. Roumaine math. Pure Appl., 45(2)(2000), 659-669.
  • M. Roitman, Polynomial extensions of atomic domains, J. Pure Appl. Algebra, (1993), 187-199.
  • T. Shah, A note on ascend and descend of factorization properties, Bull. Korean Math. Soc. 43(2)(2006), 419-424.
  • M. Zafrullah, Semirigid GCD-domains, Manuscripta Math., 17 (1975), 55-66.
  • M. Zafrullah, Unique representation domains, J. Natur. Sci. Math., 18(2) (1978), 19-29.
  • M. Zafrullah, On a property of pre-Schreier domains, Comm. Algebra, (9)(1987), 1895-1920.
  • A. Zaks, Half-factorial domain, Bull. Amer. Math. Soc., 82 (1976), 721-723.
  • A. Zaks, Atomic rings without a.c.c. on principal ideals, J. Algebra, 74 (1982), 231. Tariq Shah
  • Department of Mathematics Quaid-i-Azam University Islamabad, Pakistan e-mail: stariqshah@gmail.com
Year 2010, Volume: 7 Issue: 7, 34 - 46, 01.06.2010

Abstract

References

  • D. D. Anderson and J. L. Mott, Cohen-Kaplansky domains: Integral domains with a finite number of irreducible elements, J. Algebra, 148 (1992), 17-41.
  • D. D. Anderson and D. F. Anderson, Elasticity of factorizations in integral domains, J. Pure Appl. Algebra, 80 (1992), 217-235.
  • D. D. Anderson, D. F. Anderson and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra, 69 (1990), 1-19.
  • D. D. Anderson, D. F. Anderson and M. Zafrullah, Factorization in integral domains, II , J. Algebra, 152 (1992), 78-93.
  • D. F. Anderson and S. T. Chapman, Overrings of half-factorial domains II , Comm. Algebra, 23(11) (1995), 3961-3976.
  • A. Badawi, Remarks on pseudo-valuation rings, Comm. Algebra, 28(5) (2000), 2358.
  • J. Boynton, Pullback of arithmetical rings, Comm. Algebra, 35 (9)(2007), 2671
  • S. T. Chapman and W. W. Smith, On the HFD, CHFD and K-HFD properties in Dedekind domains, Comm. Algebra, 20 (7) (1992), 1955-1987.
  • P. M. Cohn, Bezeout rings and their subrings, Proc. Camb. Phil., Soc. 64 (1968), 251-264.
  • A. Grams, Atomic domains and the ascending chain condition for principal ideals, Proc. Camb. Phil. Soc., 75 (1974), 321-329.
  • J. R. Hedstorm and E G. Houston, Pseudo-valuation domains, Pacific J. Math., (1)(1978), 137-147.
  • E. Houston and J. Taylor, Arithmetic properties in pullbacks, J. Algebra, 310 (2007), 235-260.
  • H. C. Hutchins, Examples of commutative rings, Polygonal Publishing House, Passaic, NJ 07055 USA, 1981.
  • H. Kim, Examples of Half-factorial domains, Canad. Math. Bull., Vol., 43(3) (2000), 362-367.
  • J. Maney, Boundary valuation domains, J. Algebra, 273 (2004), 373-383.
  • N. Radu, S. O. Ibrahim Al-Salihi and T. Shah, Ascend and descend of factor- ization properties, Rev. Roumaine math. Pure Appl., 45(2)(2000), 659-669.
  • M. Roitman, Polynomial extensions of atomic domains, J. Pure Appl. Algebra, (1993), 187-199.
  • T. Shah, A note on ascend and descend of factorization properties, Bull. Korean Math. Soc. 43(2)(2006), 419-424.
  • M. Zafrullah, Semirigid GCD-domains, Manuscripta Math., 17 (1975), 55-66.
  • M. Zafrullah, Unique representation domains, J. Natur. Sci. Math., 18(2) (1978), 19-29.
  • M. Zafrullah, On a property of pre-Schreier domains, Comm. Algebra, (9)(1987), 1895-1920.
  • A. Zaks, Half-factorial domain, Bull. Amer. Math. Soc., 82 (1976), 721-723.
  • A. Zaks, Atomic rings without a.c.c. on principal ideals, J. Algebra, 74 (1982), 231. Tariq Shah
  • Department of Mathematics Quaid-i-Azam University Islamabad, Pakistan e-mail: stariqshah@gmail.com
There are 24 citations in total.

Details

Other ID JA88YU33PZ
Journal Section Articles
Authors

Tariq Shah This is me

Publication Date June 1, 2010
Published in Issue Year 2010 Volume: 7 Issue: 7

Cite

APA Shah, T. (2010). RELATIVE ASCENT AND DESCENT IN A DOMAIN EXTENSION. International Electronic Journal of Algebra, 7(7), 34-46.
AMA Shah T. RELATIVE ASCENT AND DESCENT IN A DOMAIN EXTENSION. IEJA. June 2010;7(7):34-46.
Chicago Shah, Tariq. “RELATIVE ASCENT AND DESCENT IN A DOMAIN EXTENSION”. International Electronic Journal of Algebra 7, no. 7 (June 2010): 34-46.
EndNote Shah T (June 1, 2010) RELATIVE ASCENT AND DESCENT IN A DOMAIN EXTENSION. International Electronic Journal of Algebra 7 7 34–46.
IEEE T. Shah, “RELATIVE ASCENT AND DESCENT IN A DOMAIN EXTENSION”, IEJA, vol. 7, no. 7, pp. 34–46, 2010.
ISNAD Shah, Tariq. “RELATIVE ASCENT AND DESCENT IN A DOMAIN EXTENSION”. International Electronic Journal of Algebra 7/7 (June 2010), 34-46.
JAMA Shah T. RELATIVE ASCENT AND DESCENT IN A DOMAIN EXTENSION. IEJA. 2010;7:34–46.
MLA Shah, Tariq. “RELATIVE ASCENT AND DESCENT IN A DOMAIN EXTENSION”. International Electronic Journal of Algebra, vol. 7, no. 7, 2010, pp. 34-46.
Vancouver Shah T. RELATIVE ASCENT AND DESCENT IN A DOMAIN EXTENSION. IEJA. 2010;7(7):34-46.