Let R be a commutative ring with non-zero identity element. For two fixed positive integers m and n. For two fixed positive integers m and n, a right R-module M is called fully (m, n)-stable, if θ(N) ⊆ N for each ngenerated submodule N of Mm and R-homomorphism θ : N → Mm. In this paper we give some characterization theorems and properties of fully (m, n)-stable modules which generalize the results of fully stable modules. Also we study and describe the maximal submodules of fully (m, n)-stable modules
Abbas, M. S., & Mohammedali, M. J. (2009). A NOTE ON FULLY (m, n)-STABLE MODULES. International Electronic Journal of Algebra, 6(6), 65-73.
AMA
Abbas MS, Mohammedali MJ. A NOTE ON FULLY (m, n)-STABLE MODULES. IEJA. December 2009;6(6):65-73.
Chicago
Abbas, M. S., and M. J. Mohammedali. “A NOTE ON FULLY (m, N)-STABLE MODULES”. International Electronic Journal of Algebra 6, no. 6 (December 2009): 65-73.
EndNote
Abbas MS, Mohammedali MJ (December 1, 2009) A NOTE ON FULLY (m, n)-STABLE MODULES. International Electronic Journal of Algebra 6 6 65–73.
IEEE
M. S. Abbas and M. J. Mohammedali, “A NOTE ON FULLY (m, n)-STABLE MODULES”, IEJA, vol. 6, no. 6, pp. 65–73, 2009.
ISNAD
Abbas, M. S. - Mohammedali, M. J. “A NOTE ON FULLY (m, N)-STABLE MODULES”. International Electronic Journal of Algebra 6/6 (December 2009), 65-73.
JAMA
Abbas MS, Mohammedali MJ. A NOTE ON FULLY (m, n)-STABLE MODULES. IEJA. 2009;6:65–73.
MLA
Abbas, M. S. and M. J. Mohammedali. “A NOTE ON FULLY (m, N)-STABLE MODULES”. International Electronic Journal of Algebra, vol. 6, no. 6, 2009, pp. 65-73.
Vancouver
Abbas MS, Mohammedali MJ. A NOTE ON FULLY (m, n)-STABLE MODULES. IEJA. 2009;6(6):65-73.