BibTex RIS Kaynak Göster

GENERALIZED COFINITELY SEMIPERFECT MODULES

Yıl 2009, Cilt: 5 Sayı: 5, 58 - 69, 01.06.2009

Öz

In the present paper, we define generalized (amply) cofinitely supplemented modules, and generalized ⊕-cofinitely supplemented modules are defined as a generalization of (amply) cofinitely supplemented modules and ⊕-cofinitely supplemented modules, respectively, and show, among others, the following results:
(1) The class of generalized cofinitely supplemented modules is closed under taking homomorphic images, generalized covers and arbitrary direct sums.
(2) Any finite direct sum of generalized ⊕-cofinitely supplemented modules is a generalized ⊕-cofinitely supplemented module.
(3) M is a generalized cofinitely semiperfect module if and only if M is a generalized cofinitely supplemented -module by supplements which have generalized projective covers.

Kaynakça

  • R. Alizade, G. Bilhan and P.F. Smith, Modules whose maximal submodules have supplements, Comm. Algebra, 29 (2001), 2389-2405.
  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer- Verlag, New York 1992.
  • G. Azumaya, Some characterizations of semiperfect rings and modules, in Ring Theory, edited by S.K. Jain and S. T. Rizvi, Proc. Biennial Ohio-Denison Conf., May 1992, World Scientific Publ., Singapore, 1993, 28-40.
  • E. B¨uy¨uka¸sık and C. Lomp, On a recent generalization of semiperfect rings, to appear in Bull. Aust. Math. Soc., 78(2) (2008), 317-325.
  • H. C¸ alı¸sıcı and A. Pancar, Cofinitely semiperfect Modules, Sib. Math. J., 46(2) (2005), 359-363.
  • F. Kasch, Modules and Rings, Academic Press, London 1982.
  • M. T. Ko¸san, ⊕-Cofinitely supplemented modules, Commun. Fac. Sci. Univ. Ank. Series A1, 53(1)(2004), 21-32.
  • A. Leghwel, T. Ko¸san, N. Agayev and A. Harmancı, Duo modules and duo rings, Far East J. Math., 20(3) (2006), 341-346.
  • S.H. Mohammed and B. J. M¨uller, Continous and Discrete Modules, London Math. Soc., LN 147, Cambridge Univ. Press, 1990.
  • P.F. Smith, Modules for which every submodule has a unique closure, in Ring Theory (Editors, S.K. Jain and S.T. Rizvi), World Sci. (Singapore, 1993), pp.302-313.
  • P.F. Smith, Finitely generated supplemented modules are amply supplemented, The Arab. J. Sci. and Eng., 25 (2000), 69-79.
  • Y. Wang and N. Ding, Generalized supplemented modules, Taiwanese J. Math., (6) (2006), 1589-1601.
  • X. Wue, Characterizations of semiperfect and perfect rings, Publications Matem`atiques, 40 (1996), 115-125.
  • R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991. M. Tamer Ko¸san
  • Department of Mathematics, Faculty of Science, Gebze Institute of Technology C¸ ayırova Campus 41400 Gebze-Kocaeli, Turkey email: mtkosan@gyte.edu.tr
Yıl 2009, Cilt: 5 Sayı: 5, 58 - 69, 01.06.2009

Öz

Kaynakça

  • R. Alizade, G. Bilhan and P.F. Smith, Modules whose maximal submodules have supplements, Comm. Algebra, 29 (2001), 2389-2405.
  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer- Verlag, New York 1992.
  • G. Azumaya, Some characterizations of semiperfect rings and modules, in Ring Theory, edited by S.K. Jain and S. T. Rizvi, Proc. Biennial Ohio-Denison Conf., May 1992, World Scientific Publ., Singapore, 1993, 28-40.
  • E. B¨uy¨uka¸sık and C. Lomp, On a recent generalization of semiperfect rings, to appear in Bull. Aust. Math. Soc., 78(2) (2008), 317-325.
  • H. C¸ alı¸sıcı and A. Pancar, Cofinitely semiperfect Modules, Sib. Math. J., 46(2) (2005), 359-363.
  • F. Kasch, Modules and Rings, Academic Press, London 1982.
  • M. T. Ko¸san, ⊕-Cofinitely supplemented modules, Commun. Fac. Sci. Univ. Ank. Series A1, 53(1)(2004), 21-32.
  • A. Leghwel, T. Ko¸san, N. Agayev and A. Harmancı, Duo modules and duo rings, Far East J. Math., 20(3) (2006), 341-346.
  • S.H. Mohammed and B. J. M¨uller, Continous and Discrete Modules, London Math. Soc., LN 147, Cambridge Univ. Press, 1990.
  • P.F. Smith, Modules for which every submodule has a unique closure, in Ring Theory (Editors, S.K. Jain and S.T. Rizvi), World Sci. (Singapore, 1993), pp.302-313.
  • P.F. Smith, Finitely generated supplemented modules are amply supplemented, The Arab. J. Sci. and Eng., 25 (2000), 69-79.
  • Y. Wang and N. Ding, Generalized supplemented modules, Taiwanese J. Math., (6) (2006), 1589-1601.
  • X. Wue, Characterizations of semiperfect and perfect rings, Publications Matem`atiques, 40 (1996), 115-125.
  • R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991. M. Tamer Ko¸san
  • Department of Mathematics, Faculty of Science, Gebze Institute of Technology C¸ ayırova Campus 41400 Gebze-Kocaeli, Turkey email: mtkosan@gyte.edu.tr
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA96CV98EN
Bölüm Makaleler
Yazarlar

M. Tamer Koşan Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2009
Yayımlandığı Sayı Yıl 2009 Cilt: 5 Sayı: 5

Kaynak Göster

APA Koşan, M. T. (2009). GENERALIZED COFINITELY SEMIPERFECT MODULES. International Electronic Journal of Algebra, 5(5), 58-69.
AMA Koşan MT. GENERALIZED COFINITELY SEMIPERFECT MODULES. IEJA. Haziran 2009;5(5):58-69.
Chicago Koşan, M. Tamer. “GENERALIZED COFINITELY SEMIPERFECT MODULES”. International Electronic Journal of Algebra 5, sy. 5 (Haziran 2009): 58-69.
EndNote Koşan MT (01 Haziran 2009) GENERALIZED COFINITELY SEMIPERFECT MODULES. International Electronic Journal of Algebra 5 5 58–69.
IEEE M. T. Koşan, “GENERALIZED COFINITELY SEMIPERFECT MODULES”, IEJA, c. 5, sy. 5, ss. 58–69, 2009.
ISNAD Koşan, M. Tamer. “GENERALIZED COFINITELY SEMIPERFECT MODULES”. International Electronic Journal of Algebra 5/5 (Haziran 2009), 58-69.
JAMA Koşan MT. GENERALIZED COFINITELY SEMIPERFECT MODULES. IEJA. 2009;5:58–69.
MLA Koşan, M. Tamer. “GENERALIZED COFINITELY SEMIPERFECT MODULES”. International Electronic Journal of Algebra, c. 5, sy. 5, 2009, ss. 58-69.
Vancouver Koşan MT. GENERALIZED COFINITELY SEMIPERFECT MODULES. IEJA. 2009;5(5):58-69.