Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 23 Sayı: 23, 47 - 114, 11.01.2018
https://doi.org/10.24330/ieja.373645

Öz

Kaynakça

  • S. D. Berman, On the theory of representations of nite groups, Doklady Akad. Nauk SSSR (N.S.), 86 (1952), 885-888.
  • S. D. Berman, Characters of linear representations of nite groups over an arbitrary eld, Mat. Sb. N.S., 44(86) (1958), 409-456.
  • S. D. Berman and P. M. Gudivok, Indecomposable representations of nite groups over the ring of p-adic integers, Izv. Akad. Nauk SSSR Ser. Mat., 28 (1964), 875-910.
  • R. Brauer, A characterization of the characters of groups of nite order, Ann. of Math., 57 (1953), 357-377.
  • J. Coates, p-adic L-functions and Iwasawa's theory, Algebraic number elds: L-functions and Galois properties (Proc. Sympos., Univ. Durham, 1975) Academic Press, London, 1977, 269-353.
  • H. Cohen, Number Theory I, Tools and Diophantine Equations, Graduate Texts in Mathematics, 239, Springer, New York, 2007.
  • H. Cohen, Number Theory II, Analytic and Modern Tools, Graduate Texts in Mathematics, 240, Springer, New York, 2007.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Eynsham, 1985.
  • B. N. Cooperstein, Maximal subgroups of G2(2n), J. Algebra, 70(1) (1981), 23-36.
  • M. Costantini and E. Jabara, On nite groups in which cyclic subgroups of the same order are conjugate, Comm. Algebra, 37(11) (2009), 3966-3990.
  • D. A. Craven, The Theory of Fusion Systems: an algebraic approach, Cambridge Studies in Advanced Mathematics, 131, Cambridge University Press, Cambridge, 2011.
  • C. W. Curtis and I. Reiner, Methods of Representation Theory. Vol. I, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1981.
  • D. I. Deriziotis and G. O. Michler, Character table and blocks of nite simple triality groups 3D4(q), Trans. Amer. Math. Soc., 303(1) (1987), 39-70.
  • L. Dornho , The rank of primitive solvable permutation groups, Math. Z., 109 (1969), 205-210.
  • L. Dornho , Group Representation Theory. Part A: Ordinary Representation Theory, Pure and Applied Mathematics, 7, Marcel Dekker, Inc., New York, 1971.
  • J. A. Drozd and A. V. Roter, Commutative rings with a nite number of indecomposable integral representations, Izv. Akad. Nauk SSSR Ser. Mat., 31 (1967), 783-798.
  • R. H. Dye, On the involution classes of the linear groups GLn(K), SLn(K), PGLn(K), PSLn(K) over elds of characteristic two, Proc. Cambridge Philos. Soc., 72 (1972), 1-6.
  • R. H. Dye, On the conjugacy classes of involutions of the unitary groups Um(K), SUm(K), PUm(K), PSUm(K), over perfect elds of characteristic 2, J. Algebra, 24 (1973), 453-459.
  • D. A. Foulser, Solvable primitive permutation groups of low rank, Trans. Amer. Math. Soc., 143 (1969), 1-54.
  • T. Fritzsche, The Brauer group of character rings, J. Algebra, 361 (2012), 37-40.
  • T. Fritzsche, Der Darstellungstyp des Charakterrings Einer Endlichen Gruppe, Friedrich Schiller University Jena, 2014.
  • E. L. Green and I. Reiner, Integral representations and diagrams, Michigan Math. J., 25(1) (1978), 53-84.
  • A. Heller and I. Reiner, Representations of cyclic groups in rings of integers, I, Ann. of Math., 76 (1962), 73-92.
  • A. Heller and I. Reiner, Representations of cyclic groups in rings of integers, II, Ann. of Math., 77 (1963), 318-328.
  • C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order, Geometriae Dedicata, 2 (1974), 425-460.
  • G. Higman, Suzuki 2-groups, Illinois J. Math., 7 (1963), 79-96.
  • B. Huppert and N. Blackburn, Finite Groups II, Grundlehren der Mathematischen Wissenschaften 242, Springer-Verlag, Berlin-New York, 1982.
  • B. Huppert and N. Blackburn, Finite Groups III, Grundlehren der Mathematischen Wissenschaften 243, Springer-Verlag, Berlin-New York, 1982.
  • I. M. Isaacs, Character Theory of Finite Groups, Dover Publications, Inc., New York, 1994.
  • H. Jacobinski, Sur les ordres commutatifs avec un nombre ni de reseaux indecomposables, Acta Math., 118 (1967), 1-31.
  • A. Jones, Groups with a nite number of indecomposable integral representa- tions, Michigan Math. J., 10 (1963), 257-261.
  • H. E. Jordan, Group-characters of various types of linear groups, Amer. J. Math., 29(4) (1907), 387-405.
  • P. B. Kleidman, The maximal subgroups of the Chevalley groups G2(q) with q odd, the Ree groups 2G2(q), and their automorphism groups, J. Algebra, 117(1) (1988), 30-71.
  • G. Navarro and J. Tent, Rationality and Sylow 2-subgroups, Proc. Edinb. Math. Soc., 53 (2010), 787-798.
  • A. Raggi-Cardenas, Burnside rings of nite representation type, Bull. Austral. Math. Soc., 42(2) (1990), 247-251.
  • U. Reichenbach, Modultheorie von Burnsideringen Endlicher Gruppen, Mathematica Gottingensis 12, 1997.
  • J.-P. Serre, Lineare Darstellungen Endlicher Gruppen, Akademie-Verlag, Berlin, 1972.
  • E. E. Shult, On nite automorphic algebras, Illinois J. Math., 13 (1969), 625- 653.
  • W. A. Simpson and J. S. Frame, The character tables for SL(3; q), SU(3; q2), PSL(3; q), PSU(3; q2), Canad. J. Math., 25 (1973), 486-494.
  • R. Steinberg, The representations of GL(3; q), GL(4; q), PGL(3; q), and PGL(4; q), Canad. J. Math., 3 (1951), 225-235.
  • M. Suzuki, On a class of doubly transitive groups, Ann. of Math., 75 (1962), 105-145.
  • H. N. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc., 121 (1966), 62-89.
  • R. A. Wilson, The Finite Simple Groups, Graduate Texts in Mathematics, 251, Springer-Verlag London, Ltd., London, 2009.
  • H. Yamaki, The order of a group of even order, Proc. Amer. Math. Soc., 136(2) (2008), 397-402.

The representation type of the character ring

Yıl 2018, Cilt: 23 Sayı: 23, 47 - 114, 11.01.2018
https://doi.org/10.24330/ieja.373645

Öz

Let R(G) be the character ring of a nite group G. We consider
the question whether the representation type of R(G) is nite or in nite. We
show that if R(G) is representation- nite, then exp(G) is cube-free and the
Sylow subgroups of G are cyclic, elementary-abelian, or nonabelian of order
8. Moreover, we give further necessary as well as some sucient conditions on
the structure of G for the niteness of the representation type of R(G).

Kaynakça

  • S. D. Berman, On the theory of representations of nite groups, Doklady Akad. Nauk SSSR (N.S.), 86 (1952), 885-888.
  • S. D. Berman, Characters of linear representations of nite groups over an arbitrary eld, Mat. Sb. N.S., 44(86) (1958), 409-456.
  • S. D. Berman and P. M. Gudivok, Indecomposable representations of nite groups over the ring of p-adic integers, Izv. Akad. Nauk SSSR Ser. Mat., 28 (1964), 875-910.
  • R. Brauer, A characterization of the characters of groups of nite order, Ann. of Math., 57 (1953), 357-377.
  • J. Coates, p-adic L-functions and Iwasawa's theory, Algebraic number elds: L-functions and Galois properties (Proc. Sympos., Univ. Durham, 1975) Academic Press, London, 1977, 269-353.
  • H. Cohen, Number Theory I, Tools and Diophantine Equations, Graduate Texts in Mathematics, 239, Springer, New York, 2007.
  • H. Cohen, Number Theory II, Analytic and Modern Tools, Graduate Texts in Mathematics, 240, Springer, New York, 2007.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Eynsham, 1985.
  • B. N. Cooperstein, Maximal subgroups of G2(2n), J. Algebra, 70(1) (1981), 23-36.
  • M. Costantini and E. Jabara, On nite groups in which cyclic subgroups of the same order are conjugate, Comm. Algebra, 37(11) (2009), 3966-3990.
  • D. A. Craven, The Theory of Fusion Systems: an algebraic approach, Cambridge Studies in Advanced Mathematics, 131, Cambridge University Press, Cambridge, 2011.
  • C. W. Curtis and I. Reiner, Methods of Representation Theory. Vol. I, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1981.
  • D. I. Deriziotis and G. O. Michler, Character table and blocks of nite simple triality groups 3D4(q), Trans. Amer. Math. Soc., 303(1) (1987), 39-70.
  • L. Dornho , The rank of primitive solvable permutation groups, Math. Z., 109 (1969), 205-210.
  • L. Dornho , Group Representation Theory. Part A: Ordinary Representation Theory, Pure and Applied Mathematics, 7, Marcel Dekker, Inc., New York, 1971.
  • J. A. Drozd and A. V. Roter, Commutative rings with a nite number of indecomposable integral representations, Izv. Akad. Nauk SSSR Ser. Mat., 31 (1967), 783-798.
  • R. H. Dye, On the involution classes of the linear groups GLn(K), SLn(K), PGLn(K), PSLn(K) over elds of characteristic two, Proc. Cambridge Philos. Soc., 72 (1972), 1-6.
  • R. H. Dye, On the conjugacy classes of involutions of the unitary groups Um(K), SUm(K), PUm(K), PSUm(K), over perfect elds of characteristic 2, J. Algebra, 24 (1973), 453-459.
  • D. A. Foulser, Solvable primitive permutation groups of low rank, Trans. Amer. Math. Soc., 143 (1969), 1-54.
  • T. Fritzsche, The Brauer group of character rings, J. Algebra, 361 (2012), 37-40.
  • T. Fritzsche, Der Darstellungstyp des Charakterrings Einer Endlichen Gruppe, Friedrich Schiller University Jena, 2014.
  • E. L. Green and I. Reiner, Integral representations and diagrams, Michigan Math. J., 25(1) (1978), 53-84.
  • A. Heller and I. Reiner, Representations of cyclic groups in rings of integers, I, Ann. of Math., 76 (1962), 73-92.
  • A. Heller and I. Reiner, Representations of cyclic groups in rings of integers, II, Ann. of Math., 77 (1963), 318-328.
  • C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order, Geometriae Dedicata, 2 (1974), 425-460.
  • G. Higman, Suzuki 2-groups, Illinois J. Math., 7 (1963), 79-96.
  • B. Huppert and N. Blackburn, Finite Groups II, Grundlehren der Mathematischen Wissenschaften 242, Springer-Verlag, Berlin-New York, 1982.
  • B. Huppert and N. Blackburn, Finite Groups III, Grundlehren der Mathematischen Wissenschaften 243, Springer-Verlag, Berlin-New York, 1982.
  • I. M. Isaacs, Character Theory of Finite Groups, Dover Publications, Inc., New York, 1994.
  • H. Jacobinski, Sur les ordres commutatifs avec un nombre ni de reseaux indecomposables, Acta Math., 118 (1967), 1-31.
  • A. Jones, Groups with a nite number of indecomposable integral representa- tions, Michigan Math. J., 10 (1963), 257-261.
  • H. E. Jordan, Group-characters of various types of linear groups, Amer. J. Math., 29(4) (1907), 387-405.
  • P. B. Kleidman, The maximal subgroups of the Chevalley groups G2(q) with q odd, the Ree groups 2G2(q), and their automorphism groups, J. Algebra, 117(1) (1988), 30-71.
  • G. Navarro and J. Tent, Rationality and Sylow 2-subgroups, Proc. Edinb. Math. Soc., 53 (2010), 787-798.
  • A. Raggi-Cardenas, Burnside rings of nite representation type, Bull. Austral. Math. Soc., 42(2) (1990), 247-251.
  • U. Reichenbach, Modultheorie von Burnsideringen Endlicher Gruppen, Mathematica Gottingensis 12, 1997.
  • J.-P. Serre, Lineare Darstellungen Endlicher Gruppen, Akademie-Verlag, Berlin, 1972.
  • E. E. Shult, On nite automorphic algebras, Illinois J. Math., 13 (1969), 625- 653.
  • W. A. Simpson and J. S. Frame, The character tables for SL(3; q), SU(3; q2), PSL(3; q), PSU(3; q2), Canad. J. Math., 25 (1973), 486-494.
  • R. Steinberg, The representations of GL(3; q), GL(4; q), PGL(3; q), and PGL(4; q), Canad. J. Math., 3 (1951), 225-235.
  • M. Suzuki, On a class of doubly transitive groups, Ann. of Math., 75 (1962), 105-145.
  • H. N. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc., 121 (1966), 62-89.
  • R. A. Wilson, The Finite Simple Groups, Graduate Texts in Mathematics, 251, Springer-Verlag London, Ltd., London, 2009.
  • H. Yamaki, The order of a group of even order, Proc. Amer. Math. Soc., 136(2) (2008), 397-402.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Tim Fritzsche Bu kişi benim

Yayımlanma Tarihi 11 Ocak 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 23 Sayı: 23

Kaynak Göster

APA Fritzsche, T. (2018). The representation type of the character ring. International Electronic Journal of Algebra, 23(23), 47-114. https://doi.org/10.24330/ieja.373645
AMA Fritzsche T. The representation type of the character ring. IEJA. Ocak 2018;23(23):47-114. doi:10.24330/ieja.373645
Chicago Fritzsche, Tim. “The Representation Type of the Character Ring”. International Electronic Journal of Algebra 23, sy. 23 (Ocak 2018): 47-114. https://doi.org/10.24330/ieja.373645.
EndNote Fritzsche T (01 Ocak 2018) The representation type of the character ring. International Electronic Journal of Algebra 23 23 47–114.
IEEE T. Fritzsche, “The representation type of the character ring”, IEJA, c. 23, sy. 23, ss. 47–114, 2018, doi: 10.24330/ieja.373645.
ISNAD Fritzsche, Tim. “The Representation Type of the Character Ring”. International Electronic Journal of Algebra 23/23 (Ocak 2018), 47-114. https://doi.org/10.24330/ieja.373645.
JAMA Fritzsche T. The representation type of the character ring. IEJA. 2018;23:47–114.
MLA Fritzsche, Tim. “The Representation Type of the Character Ring”. International Electronic Journal of Algebra, c. 23, sy. 23, 2018, ss. 47-114, doi:10.24330/ieja.373645.
Vancouver Fritzsche T. The representation type of the character ring. IEJA. 2018;23(23):47-114.