Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 24 Sayı: 24, 73 - 90, 05.07.2018
https://doi.org/10.24330/ieja.440221

Öz

Kaynakça

  • S. Abe, A characterization of some nite simple groups by orders of their solvable subgroups, Hokkaido Math. J., 31(2) (2002), 349-361.
  • S. Abe and N. Iiyori, A generalization of prime graphs of nite groups, Hokkaido Math. J., 29(2) (2000), 391-407.
  • B. Akbari, N. Iiyori and A. R. Moghaddamfar, A new characterization of some simple groups by order and degree pattern of solvable graph, Hokkaido Math. J., 45(3) (2016), 337-363.
  • J. N. Bray, D. F. Holt and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, London Mathematical Society Lecture Note Series, 407, Cambridge University Press, Cambridge, 2013.
  • A. A. Buturlakin, Spectra of nite linear and unitary groups, Algebra Logic, 47(2) (2008), 91-99.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Eynsham, 1985.
  • O. H. King, The subgroup structure of nite classical groups in terms of geo- metric con gurations, Surveys in combinatorics, London Math. Soc., Lecture Note Ser., 327, Cambridge Univ. Press, Cambridge, (2005), 29-56.
  • A. V. Vasilev and E. P. Vdovin, An adjacency criterion in the prime graph of a nite simple group, Algebra Logic, 44(6) (2005), 381-406.
  • A. V. Vasilev and E. P. Vdovin, Cocliques of maximal size in the prime graph of a nite simple group, Algebra Logic, 50(4) (2011), 291-322.
  • A. V. Zavarnitsin and V. D. Mazurov, Element orders in coverings of symmet- ric and alternating groups, Algebra Logic, 38(3) (1999), 159-170.
  • K. Zsigmondy, Zur theorie der potenzreste, Monatsh. Math. Phys., 3(1) (1892) 265-284.

ODs-CHARACTERIZATION OF SOME LOW-DIMENSIONAL FINITE CLASSICAL GROUPS

Yıl 2018, Cilt: 24 Sayı: 24, 73 - 90, 05.07.2018
https://doi.org/10.24330/ieja.440221

Öz

The solvable graph of a nite group G, which is denoted by
􀀀s(G), is a simple graph whose vertex set is comprised of the prime divisors
of jGj and two distinct primes p and q are joined by an edge if and
only if there exists a solvable subgroup of G such that its order is divisible
by pq. Let p1 < p2 < < pk be all prime divisors of jGj and let
Ds(G) = (ds(p1); ds(p2); : : : ; ds(pk)), where ds(p) signies the degree of the
vertex p in 􀀀s(G). We will simply call Ds(G) the degree pattern of solvable
graph of G. A nite group H is said to be ODs-characterizable if H = G for
every nite group G such that jGj = jHj and Ds(G) = Ds(H). In this paper,
we study the solvable graph of some subgroups and some extensions of a nite
group. Furthermore, we prove that the linear groups L3(q) with certain properties,
are ODs-characterizable

Kaynakça

  • S. Abe, A characterization of some nite simple groups by orders of their solvable subgroups, Hokkaido Math. J., 31(2) (2002), 349-361.
  • S. Abe and N. Iiyori, A generalization of prime graphs of nite groups, Hokkaido Math. J., 29(2) (2000), 391-407.
  • B. Akbari, N. Iiyori and A. R. Moghaddamfar, A new characterization of some simple groups by order and degree pattern of solvable graph, Hokkaido Math. J., 45(3) (2016), 337-363.
  • J. N. Bray, D. F. Holt and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, London Mathematical Society Lecture Note Series, 407, Cambridge University Press, Cambridge, 2013.
  • A. A. Buturlakin, Spectra of nite linear and unitary groups, Algebra Logic, 47(2) (2008), 91-99.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Eynsham, 1985.
  • O. H. King, The subgroup structure of nite classical groups in terms of geo- metric con gurations, Surveys in combinatorics, London Math. Soc., Lecture Note Ser., 327, Cambridge Univ. Press, Cambridge, (2005), 29-56.
  • A. V. Vasilev and E. P. Vdovin, An adjacency criterion in the prime graph of a nite simple group, Algebra Logic, 44(6) (2005), 381-406.
  • A. V. Vasilev and E. P. Vdovin, Cocliques of maximal size in the prime graph of a nite simple group, Algebra Logic, 50(4) (2011), 291-322.
  • A. V. Zavarnitsin and V. D. Mazurov, Element orders in coverings of symmet- ric and alternating groups, Algebra Logic, 38(3) (1999), 159-170.
  • K. Zsigmondy, Zur theorie der potenzreste, Monatsh. Math. Phys., 3(1) (1892) 265-284.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

B. Akbari Bu kişi benim

Yayımlanma Tarihi 5 Temmuz 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 24 Sayı: 24

Kaynak Göster

APA Akbari, B. (2018). ODs-CHARACTERIZATION OF SOME LOW-DIMENSIONAL FINITE CLASSICAL GROUPS. International Electronic Journal of Algebra, 24(24), 73-90. https://doi.org/10.24330/ieja.440221
AMA Akbari B. ODs-CHARACTERIZATION OF SOME LOW-DIMENSIONAL FINITE CLASSICAL GROUPS. IEJA. Temmuz 2018;24(24):73-90. doi:10.24330/ieja.440221
Chicago Akbari, B. “ODs-CHARACTERIZATION OF SOME LOW-DIMENSIONAL FINITE CLASSICAL GROUPS”. International Electronic Journal of Algebra 24, sy. 24 (Temmuz 2018): 73-90. https://doi.org/10.24330/ieja.440221.
EndNote Akbari B (01 Temmuz 2018) ODs-CHARACTERIZATION OF SOME LOW-DIMENSIONAL FINITE CLASSICAL GROUPS. International Electronic Journal of Algebra 24 24 73–90.
IEEE B. Akbari, “ODs-CHARACTERIZATION OF SOME LOW-DIMENSIONAL FINITE CLASSICAL GROUPS”, IEJA, c. 24, sy. 24, ss. 73–90, 2018, doi: 10.24330/ieja.440221.
ISNAD Akbari, B. “ODs-CHARACTERIZATION OF SOME LOW-DIMENSIONAL FINITE CLASSICAL GROUPS”. International Electronic Journal of Algebra 24/24 (Temmuz 2018), 73-90. https://doi.org/10.24330/ieja.440221.
JAMA Akbari B. ODs-CHARACTERIZATION OF SOME LOW-DIMENSIONAL FINITE CLASSICAL GROUPS. IEJA. 2018;24:73–90.
MLA Akbari, B. “ODs-CHARACTERIZATION OF SOME LOW-DIMENSIONAL FINITE CLASSICAL GROUPS”. International Electronic Journal of Algebra, c. 24, sy. 24, 2018, ss. 73-90, doi:10.24330/ieja.440221.
Vancouver Akbari B. ODs-CHARACTERIZATION OF SOME LOW-DIMENSIONAL FINITE CLASSICAL GROUPS. IEJA. 2018;24(24):73-90.