Araştırma Makalesi
BibTex RIS Kaynak Göster

SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP

Yıl 2019, Cilt: 26 Sayı: 26, 1 - 12, 11.07.2019
https://doi.org/10.24330/ieja.586838

Öz

Let G be a finite group. The main supergraph S(G) is a graph
with vertex set G in which two vertices x and y are adjacent if and only if
o(x)|o(y) or o(y)|o(x). In an earlier paper, the main properties of this graph
was obtained. The aim of this paper is to investigate the Hamiltonianity,
Eulerianness and 2-connectedness of this graph.

Kaynakça

  • J. X. Bi, A characterization of symmetric groups (Chinese), Acta. Math. Sinica, 33 (1990), 70-77.
  • P. J. Cameron, The power graph of a fi nite group, II, J. Group Theory, 13 (2010), 779-783.
  • P. J. Cameron and S. Ghosh, The power graph of a fi nite group, Discrete Math., 311 (2011), 1220-1222.
  • I. Chakrabarty, S. Ghosh and M. K. Sen, Undirected power graphs of semi- groups, Semigroup Forum, 78 (2009), 410-426.
  • M. Chein, M. Habib and M. C. Maurer, Partitive hypergraphs, Discrete Math., 37 (1981), 35-50.
  • T. Gallai, Transitiv orientierbare graphen (German), Acta Math. Acad. Sci. Hungar., 18 (1967), 25-66.
  • M. Habib and C. Paul, A survey of the algorithmic aspects of modular decom- position, Comput. Sci. Rev., 4 (2010), 41-59.
  • A. Hamzeh, Spectrum and L-spectrum of the cyclic graph, Southeast Asian Bull. Math., 42 (2018), 875-884.
  • A. Hamzeh and A. R. Ashrafi , Automorphism groups of supergraphs of the power graph of a fi nite group, European J. Combin., 60 (2017), 82-88.
  • A. Hamzeh and A. R. Ashrafi , Spectrum and L-spectrum of the power graph and its main supergraph for certain fi nite groups, Filomat, 31(16) (2017), 5323- 5334.
  • A. Hamzeh and A. R. Ashrafi , The order supergraph of the power graph of a finite group, Turkish J. Math., 42 (2018), 1978-1989.
  • W. Imrich and S. Klavzar, Product Graphs: Structure and Recognition, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley- Interscience, New York, 2000.
  • A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of groups, Contributions to General Algebra, 12 (Vienna, 1999), Heyn, Klagen- furt, (2000), 229-235.
  • A. V. Kelarev and S. J. Quinn, Directed graphs and combinatorial properties of semigroups, J. Algebra, 251(1) (2002), 16-26.
  • A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of semigroups, Comment. Math. Univ. Carolin., 45(1) (2004), 1-7.
  • A. V. Kelarev, S. J. Quinn and R. Smolikova, Power graphs and semigroups of matrices, Bull. Austral. Math. Soc., 63(2) (2001), 341-344.
  • A. R. Khalili Asboei, S. S. Salehi Amiri, A. Iranmanesh and A. Tehranian, A characterization of symmetric group Sr, where r is prime number, Ann. Math. Inform., 40 (2012), 13-23.
  • A. R. Khalili Asboei, S. S. Salehi Amiri, A. Iranmanesh and A. Tehranian, A characterization of sporadic simple groups by nse and order, J. Algebra Appl., 12 (2013), 1250158 (3 pp).
  • J. S. Rose, A Course on Group Theory, Cambridge University Prees, Cam- bridge, New York-Melbourne, 1978.
  • G. Sabidussi, Graph derivatives, Math. Z., 76 (1961), 385-401.
  • C. Shao and Q. Jiang, A new characterization of Mathieu groups, Arch. Math. (Brno), 46 (2010), 13-23.
  • M. Tarnauceanu, A generalization of the Euler's totient function, Asian-Eur. J. Math., 8(4) (2015), 1550087 (13 pp).
  • A. V. Vasil'ev, M. A. Grechkoseeva and V. D. Mazurov, Characterization of finite simple groups by spectrum and order, Algebra Logic, 48 (2009), 385-409.
  • D. B.West, Introduction to Graph Theory, Second Edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2001.
  • J. S. Williams, Prime graph components of finite groups, J. Algebra, 69 (1981), 487-513.
Yıl 2019, Cilt: 26 Sayı: 26, 1 - 12, 11.07.2019
https://doi.org/10.24330/ieja.586838

Öz

Kaynakça

  • J. X. Bi, A characterization of symmetric groups (Chinese), Acta. Math. Sinica, 33 (1990), 70-77.
  • P. J. Cameron, The power graph of a fi nite group, II, J. Group Theory, 13 (2010), 779-783.
  • P. J. Cameron and S. Ghosh, The power graph of a fi nite group, Discrete Math., 311 (2011), 1220-1222.
  • I. Chakrabarty, S. Ghosh and M. K. Sen, Undirected power graphs of semi- groups, Semigroup Forum, 78 (2009), 410-426.
  • M. Chein, M. Habib and M. C. Maurer, Partitive hypergraphs, Discrete Math., 37 (1981), 35-50.
  • T. Gallai, Transitiv orientierbare graphen (German), Acta Math. Acad. Sci. Hungar., 18 (1967), 25-66.
  • M. Habib and C. Paul, A survey of the algorithmic aspects of modular decom- position, Comput. Sci. Rev., 4 (2010), 41-59.
  • A. Hamzeh, Spectrum and L-spectrum of the cyclic graph, Southeast Asian Bull. Math., 42 (2018), 875-884.
  • A. Hamzeh and A. R. Ashrafi , Automorphism groups of supergraphs of the power graph of a fi nite group, European J. Combin., 60 (2017), 82-88.
  • A. Hamzeh and A. R. Ashrafi , Spectrum and L-spectrum of the power graph and its main supergraph for certain fi nite groups, Filomat, 31(16) (2017), 5323- 5334.
  • A. Hamzeh and A. R. Ashrafi , The order supergraph of the power graph of a finite group, Turkish J. Math., 42 (2018), 1978-1989.
  • W. Imrich and S. Klavzar, Product Graphs: Structure and Recognition, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley- Interscience, New York, 2000.
  • A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of groups, Contributions to General Algebra, 12 (Vienna, 1999), Heyn, Klagen- furt, (2000), 229-235.
  • A. V. Kelarev and S. J. Quinn, Directed graphs and combinatorial properties of semigroups, J. Algebra, 251(1) (2002), 16-26.
  • A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of semigroups, Comment. Math. Univ. Carolin., 45(1) (2004), 1-7.
  • A. V. Kelarev, S. J. Quinn and R. Smolikova, Power graphs and semigroups of matrices, Bull. Austral. Math. Soc., 63(2) (2001), 341-344.
  • A. R. Khalili Asboei, S. S. Salehi Amiri, A. Iranmanesh and A. Tehranian, A characterization of symmetric group Sr, where r is prime number, Ann. Math. Inform., 40 (2012), 13-23.
  • A. R. Khalili Asboei, S. S. Salehi Amiri, A. Iranmanesh and A. Tehranian, A characterization of sporadic simple groups by nse and order, J. Algebra Appl., 12 (2013), 1250158 (3 pp).
  • J. S. Rose, A Course on Group Theory, Cambridge University Prees, Cam- bridge, New York-Melbourne, 1978.
  • G. Sabidussi, Graph derivatives, Math. Z., 76 (1961), 385-401.
  • C. Shao and Q. Jiang, A new characterization of Mathieu groups, Arch. Math. (Brno), 46 (2010), 13-23.
  • M. Tarnauceanu, A generalization of the Euler's totient function, Asian-Eur. J. Math., 8(4) (2015), 1550087 (13 pp).
  • A. V. Vasil'ev, M. A. Grechkoseeva and V. D. Mazurov, Characterization of finite simple groups by spectrum and order, Algebra Logic, 48 (2009), 385-409.
  • D. B.West, Introduction to Graph Theory, Second Edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2001.
  • J. S. Williams, Prime graph components of finite groups, J. Algebra, 69 (1981), 487-513.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

A. Hamzeh Bu kişi benim

A. R. Ashrafi Bu kişi benim

Yayımlanma Tarihi 11 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 26 Sayı: 26

Kaynak Göster

APA Hamzeh, A., & Ashrafi, A. R. (2019). SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP. International Electronic Journal of Algebra, 26(26), 1-12. https://doi.org/10.24330/ieja.586838
AMA Hamzeh A, Ashrafi AR. SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP. IEJA. Temmuz 2019;26(26):1-12. doi:10.24330/ieja.586838
Chicago Hamzeh, A., ve A. R. Ashrafi. “SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP”. International Electronic Journal of Algebra 26, sy. 26 (Temmuz 2019): 1-12. https://doi.org/10.24330/ieja.586838.
EndNote Hamzeh A, Ashrafi AR (01 Temmuz 2019) SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP. International Electronic Journal of Algebra 26 26 1–12.
IEEE A. Hamzeh ve A. R. Ashrafi, “SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP”, IEJA, c. 26, sy. 26, ss. 1–12, 2019, doi: 10.24330/ieja.586838.
ISNAD Hamzeh, A. - Ashrafi, A. R. “SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP”. International Electronic Journal of Algebra 26/26 (Temmuz 2019), 1-12. https://doi.org/10.24330/ieja.586838.
JAMA Hamzeh A, Ashrafi AR. SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP. IEJA. 2019;26:1–12.
MLA Hamzeh, A. ve A. R. Ashrafi. “SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP”. International Electronic Journal of Algebra, c. 26, sy. 26, 2019, ss. 1-12, doi:10.24330/ieja.586838.
Vancouver Hamzeh A, Ashrafi AR. SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP. IEJA. 2019;26(26):1-12.