Research Article
BibTex RIS Cite

IDEMPOTENTS IN CERTAIN MATRIX RINGS OVER POLYNOMIAL RINGS

Year 2020, Volume: 27 Issue: 27, 1 - 12, 07.01.2020
https://doi.org/10.24330/ieja.662942

Abstract

We determine the forms of the nontrivial idempotents in the ring of $2\times 2$ matrices over the polynomial rings $\mathbb{Z}_{pq}[x]$ and $\mathbb{Z}_{p^2}[x]$, where $p$ and $q$ are any primes. Any such idempotent in the stated rings will be of a form in our list. Our work generalizes the results of Kanwar, Khatkar and Sharma (2017) who identified the forms of idempotents in $M_2(\mathbb{Z}_{2p}[x])$ and $M_2(\mathbb{Z}_{3p}[x])$.

References

  • P. N. Anh, G. F. Birkenmeier and L. van Wyk, Idempotents and structures of rings, Linear Multilinear Algebra, 64(10) (2016), 2002-2029.
  • D. M. Burton, Elementary Number Theory, 6th Edition, Tata McGraw-Hill Education Pvt. Ltd., 2006.
  • M. Henriksen, Two classes of rings generated by their units, J. Algebra, 31 (1974), 182-193.
  • T. W. Hungerford, Abstract Algebra: An Introduction, 3rd Edition, Cengage Learning, 2012.
  • P. Kanwar, M. Khatkar and R. K. Sharma, Idempotents and units of matrix rings over polynomial rings, Int. Electron. J. Algebra, 22 (2017), 147-169.
  • P. Kanwar, A. Leroy and J. Matczuk, Idempotents in ring extensions, J. Alge- bra, 389 (2013), 128-136.
  • E. D. Nering, Linear Algebra and Matrix Theory, 2nd Edition, John Wiley & Sons Inc., 1970.
  • W. K. Nicholson and Y. Zhou, Rings in which elements are uniquely the sum of an idempotent and a unit, Glasg. Math. J., 46(2) (2004), 227-236.
  • A. K. Srivastava, Additive representations of elements in rings: a survey, in Algebra and its Applications, Springer Proc. Math. Stat., Springer, Singapore, 174 (2016), 59-73.
Year 2020, Volume: 27 Issue: 27, 1 - 12, 07.01.2020
https://doi.org/10.24330/ieja.662942

Abstract

References

  • P. N. Anh, G. F. Birkenmeier and L. van Wyk, Idempotents and structures of rings, Linear Multilinear Algebra, 64(10) (2016), 2002-2029.
  • D. M. Burton, Elementary Number Theory, 6th Edition, Tata McGraw-Hill Education Pvt. Ltd., 2006.
  • M. Henriksen, Two classes of rings generated by their units, J. Algebra, 31 (1974), 182-193.
  • T. W. Hungerford, Abstract Algebra: An Introduction, 3rd Edition, Cengage Learning, 2012.
  • P. Kanwar, M. Khatkar and R. K. Sharma, Idempotents and units of matrix rings over polynomial rings, Int. Electron. J. Algebra, 22 (2017), 147-169.
  • P. Kanwar, A. Leroy and J. Matczuk, Idempotents in ring extensions, J. Alge- bra, 389 (2013), 128-136.
  • E. D. Nering, Linear Algebra and Matrix Theory, 2nd Edition, John Wiley & Sons Inc., 1970.
  • W. K. Nicholson and Y. Zhou, Rings in which elements are uniquely the sum of an idempotent and a unit, Glasg. Math. J., 46(2) (2004), 227-236.
  • A. K. Srivastava, Additive representations of elements in rings: a survey, in Algebra and its Applications, Springer Proc. Math. Stat., Springer, Singapore, 174 (2016), 59-73.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Jose Maria P. Balmaceda This is me

Joanne Pauline P. Datu This is me

Publication Date January 7, 2020
Published in Issue Year 2020 Volume: 27 Issue: 27

Cite

APA Balmaceda, J. M. P., & Datu, J. P. P. (2020). IDEMPOTENTS IN CERTAIN MATRIX RINGS OVER POLYNOMIAL RINGS. International Electronic Journal of Algebra, 27(27), 1-12. https://doi.org/10.24330/ieja.662942
AMA Balmaceda JMP, Datu JPP. IDEMPOTENTS IN CERTAIN MATRIX RINGS OVER POLYNOMIAL RINGS. IEJA. January 2020;27(27):1-12. doi:10.24330/ieja.662942
Chicago Balmaceda, Jose Maria P., and Joanne Pauline P. Datu. “IDEMPOTENTS IN CERTAIN MATRIX RINGS OVER POLYNOMIAL RINGS”. International Electronic Journal of Algebra 27, no. 27 (January 2020): 1-12. https://doi.org/10.24330/ieja.662942.
EndNote Balmaceda JMP, Datu JPP (January 1, 2020) IDEMPOTENTS IN CERTAIN MATRIX RINGS OVER POLYNOMIAL RINGS. International Electronic Journal of Algebra 27 27 1–12.
IEEE J. M. P. Balmaceda and J. P. P. Datu, “IDEMPOTENTS IN CERTAIN MATRIX RINGS OVER POLYNOMIAL RINGS”, IEJA, vol. 27, no. 27, pp. 1–12, 2020, doi: 10.24330/ieja.662942.
ISNAD Balmaceda, Jose Maria P. - Datu, Joanne Pauline P. “IDEMPOTENTS IN CERTAIN MATRIX RINGS OVER POLYNOMIAL RINGS”. International Electronic Journal of Algebra 27/27 (January 2020), 1-12. https://doi.org/10.24330/ieja.662942.
JAMA Balmaceda JMP, Datu JPP. IDEMPOTENTS IN CERTAIN MATRIX RINGS OVER POLYNOMIAL RINGS. IEJA. 2020;27:1–12.
MLA Balmaceda, Jose Maria P. and Joanne Pauline P. Datu. “IDEMPOTENTS IN CERTAIN MATRIX RINGS OVER POLYNOMIAL RINGS”. International Electronic Journal of Algebra, vol. 27, no. 27, 2020, pp. 1-12, doi:10.24330/ieja.662942.
Vancouver Balmaceda JMP, Datu JPP. IDEMPOTENTS IN CERTAIN MATRIX RINGS OVER POLYNOMIAL RINGS. IEJA. 2020;27(27):1-12.