Araştırma Makalesi
BibTex RIS Kaynak Göster

ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA

Yıl 2021, Cilt: 29 Sayı: 29, 134 - 147, 05.01.2021
https://doi.org/10.24330/ieja.852120

Öz

Let $R$ be a commutative ring with $1 \ne 0$ and let $m$ and
$n$ be integers with $1\leq n < m$. A proper ideal $I$ of $R$ is
called an $(m, n)$-closed ideal of $R$ if whenever $a^m \in I$ for
some $a\in R$ implies $a^n \in I$. Let $ f:A\rightarrow B$ be a
ring homomorphism and let $J$ be an ideal of $B.$ This paper
investigates the concept of $(m,n)$-closed ideals in the
amalgamation of $A$ with $B$ along $J$ with respect $f$ denoted by
$A\bowtie^{f}J$. Namely, Section 2 investigates this notion to
some extensions of ideals of $A$ to $A\bowtie^fJ$. Section 3
features the main result, which examines when each proper ideal of
$A\bowtie^fJ$ is an $(m,n)$-closed ideal. This allows us to give
necessary and sufficient conditions for the amalgamation to
inherit the radical ideal property with applications on the
transfer of von Neumann regular, $\pi$-regular and semisimple
properties.

Kaynakça

  • D. F. Anderson and A. Badawi, On $n$-absorbing ideals of commutative rings, Comm. Algebra, 39 (2011), 1646-1672.
  • D. F. Anderson and A. Badawi, On $(m, n)$-closed ideals of commutative rings, J. Algebra Appl., 16(1) (2017), 1750013 (21 pp).
  • D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1(1) (2009), 3-56.
  • A. Badawi, M. Issoual and N. Mahdou, On $n$-absorbing ideals and $(m, n)$-closed ideals in trivial ring extensions of commutative rings, J. Algebra Appl., 18(7) (2019), 1950123 (19 pp).
  • M. B. Boisen, Jr. and P. B. Sheldon, CPI-extensions: overrings of integral domains with special prime spectrums, Canadian J. Math., 29(4) (1977), 722-737.
  • M. Chhiti, N. Mahdou and M. Tamekkante, Clean property in amalgamated algebras along an ideal, Hacet. J. Math. Stat., 44(1) (2015), 41-49.
  • M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat., 45 (2007), 241-252.
  • M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443-459.
  • M. D'Anna, C. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, Commutative algebra and its applications, Walter de Gruyter, Berlin, (2009), 155-172.
  • M. D'Anna, C. A. Finocchiaro and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214 (2010), 1633-1641.
  • M. D'Anna, C. A. Finocchiaro and M. Fontana, New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra, 44(5) (2016), 1836-1851.
  • S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989.
  • J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  • M. Issoual, N. Mahdou and M. A. S. Moutui, On $n$-absorbing and strongly $n$-absorbing ideals of amalgamation, J. Algebra Appl., (2020), 2050199 (16 pp).
  • N. Mahdou and M. A. S. Moutui, On (A)-rings and strong (A)-rings issued from amalgamations, Studia Sci. Math. Hungar., 55(2) (2018), 270-279.
  • M. Nagata, Local Rings, Interscience Tracts in Pure and Applied Mathematics, 13, Interscience Publishers a division of John Wiley & Sons, New York-London, 1962.
Yıl 2021, Cilt: 29 Sayı: 29, 134 - 147, 05.01.2021
https://doi.org/10.24330/ieja.852120

Öz

Kaynakça

  • D. F. Anderson and A. Badawi, On $n$-absorbing ideals of commutative rings, Comm. Algebra, 39 (2011), 1646-1672.
  • D. F. Anderson and A. Badawi, On $(m, n)$-closed ideals of commutative rings, J. Algebra Appl., 16(1) (2017), 1750013 (21 pp).
  • D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1(1) (2009), 3-56.
  • A. Badawi, M. Issoual and N. Mahdou, On $n$-absorbing ideals and $(m, n)$-closed ideals in trivial ring extensions of commutative rings, J. Algebra Appl., 18(7) (2019), 1950123 (19 pp).
  • M. B. Boisen, Jr. and P. B. Sheldon, CPI-extensions: overrings of integral domains with special prime spectrums, Canadian J. Math., 29(4) (1977), 722-737.
  • M. Chhiti, N. Mahdou and M. Tamekkante, Clean property in amalgamated algebras along an ideal, Hacet. J. Math. Stat., 44(1) (2015), 41-49.
  • M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat., 45 (2007), 241-252.
  • M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443-459.
  • M. D'Anna, C. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, Commutative algebra and its applications, Walter de Gruyter, Berlin, (2009), 155-172.
  • M. D'Anna, C. A. Finocchiaro and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214 (2010), 1633-1641.
  • M. D'Anna, C. A. Finocchiaro and M. Fontana, New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra, 44(5) (2016), 1836-1851.
  • S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989.
  • J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  • M. Issoual, N. Mahdou and M. A. S. Moutui, On $n$-absorbing and strongly $n$-absorbing ideals of amalgamation, J. Algebra Appl., (2020), 2050199 (16 pp).
  • N. Mahdou and M. A. S. Moutui, On (A)-rings and strong (A)-rings issued from amalgamations, Studia Sci. Math. Hungar., 55(2) (2018), 270-279.
  • M. Nagata, Local Rings, Interscience Tracts in Pure and Applied Mathematics, 13, Interscience Publishers a division of John Wiley & Sons, New York-London, 1962.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Mohammed Issoual Bu kişi benim

Najib Mahdou Bu kişi benim

Moutu Abdou Salam Moutuı

Yayımlanma Tarihi 5 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 29 Sayı: 29

Kaynak Göster

APA Issoual, M., Mahdou, N., & Moutuı, M. A. S. (2021). ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA. International Electronic Journal of Algebra, 29(29), 134-147. https://doi.org/10.24330/ieja.852120
AMA Issoual M, Mahdou N, Moutuı MAS. ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA. IEJA. Ocak 2021;29(29):134-147. doi:10.24330/ieja.852120
Chicago Issoual, Mohammed, Najib Mahdou, ve Moutu Abdou Salam Moutuı. “ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA”. International Electronic Journal of Algebra 29, sy. 29 (Ocak 2021): 134-47. https://doi.org/10.24330/ieja.852120.
EndNote Issoual M, Mahdou N, Moutuı MAS (01 Ocak 2021) ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA. International Electronic Journal of Algebra 29 29 134–147.
IEEE M. Issoual, N. Mahdou, ve M. A. S. Moutuı, “ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA”, IEJA, c. 29, sy. 29, ss. 134–147, 2021, doi: 10.24330/ieja.852120.
ISNAD Issoual, Mohammed vd. “ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA”. International Electronic Journal of Algebra 29/29 (Ocak 2021), 134-147. https://doi.org/10.24330/ieja.852120.
JAMA Issoual M, Mahdou N, Moutuı MAS. ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA. IEJA. 2021;29:134–147.
MLA Issoual, Mohammed vd. “ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA”. International Electronic Journal of Algebra, c. 29, sy. 29, 2021, ss. 134-47, doi:10.24330/ieja.852120.
Vancouver Issoual M, Mahdou N, Moutuı MAS. ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA. IEJA. 2021;29(29):134-47.