Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Early Access, 1 - 13
https://doi.org/10.24330/ieja.1488479

Öz

Kaynakça

  • L. Amata, A. Ficarra and M. Crupi, A numerical characterization of the extremal Betti numbers of {$t$}-spread strongly stable ideals, J. Algebraic Combin., 55(3) (2022), 891-918.
  • R. R. Bouchat and T. M. Brown, Fibonacci numbers and resolutions of domino ideals, J. Algebra Comb. Discrete Struct. Appl., 6(2) (2019), 63-74.
  • S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra, 129(1) (1990), 1-25.
  • G. Fatabbi, On the resolution of ideals of fat points, J. Algebra, 242(1) (2001), 92-108.
  • C. A. Francisco, Resolutions of small sets of fat points, J. Pure Appl. Algebra, 203(1-3) (2005), 220-236.
  • C. A. Francisco, H. T. Hà and A. Van Tuyl, Splittings of monomial ideals, Proc. Amer. Math. Soc., 137(10) (2009), 3271-3282.
  • D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www2.macaulay2.com.
  • S. Güntürkün, Boij-Söderberg decompositions of lexicographic ideals, J. Commut. Algebra, 13(2) (2021), 209-234.
  • H. T. Hà and A. Van Tuyl, Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers, J. Algebraic Combin., 27(2) (2008), 215-245.

Generalized splittings of monomial ideals

Yıl 2024, Early Access, 1 - 13
https://doi.org/10.24330/ieja.1488479

Öz

Eliahou and Kervaire defined splittable monomial ideals and provided a relationship between the Betti numbers of the more complicated ideal in terms of the less complicated pieces. We extend the concept of splittable monomial ideals showing that an ideal which was not splittable according to the original definition is splittable in this more general definition. Further, we provide a generalized version of the result concerning the relationship between the Betti numbers.

Kaynakça

  • L. Amata, A. Ficarra and M. Crupi, A numerical characterization of the extremal Betti numbers of {$t$}-spread strongly stable ideals, J. Algebraic Combin., 55(3) (2022), 891-918.
  • R. R. Bouchat and T. M. Brown, Fibonacci numbers and resolutions of domino ideals, J. Algebra Comb. Discrete Struct. Appl., 6(2) (2019), 63-74.
  • S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra, 129(1) (1990), 1-25.
  • G. Fatabbi, On the resolution of ideals of fat points, J. Algebra, 242(1) (2001), 92-108.
  • C. A. Francisco, Resolutions of small sets of fat points, J. Pure Appl. Algebra, 203(1-3) (2005), 220-236.
  • C. A. Francisco, H. T. Hà and A. Van Tuyl, Splittings of monomial ideals, Proc. Amer. Math. Soc., 137(10) (2009), 3271-3282.
  • D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www2.macaulay2.com.
  • S. Güntürkün, Boij-Söderberg decompositions of lexicographic ideals, J. Commut. Algebra, 13(2) (2021), 209-234.
  • H. T. Hà and A. Van Tuyl, Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers, J. Algebraic Combin., 27(2) (2008), 215-245.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Rachelle R. Bouchat Bu kişi benim

Tricia Muldoon Brown Bu kişi benim

Erken Görünüm Tarihi 23 Mayıs 2024
Yayımlanma Tarihi
Gönderilme Tarihi 2 Ocak 2024
Kabul Tarihi 2 Mart 2024
Yayımlandığı Sayı Yıl 2024 Early Access

Kaynak Göster

APA Bouchat, R. R., & Brown, T. M. (2024). Generalized splittings of monomial ideals. International Electronic Journal of Algebra1-13. https://doi.org/10.24330/ieja.1488479
AMA Bouchat RR, Brown TM. Generalized splittings of monomial ideals. IEJA. Published online 01 Mayıs 2024:1-13. doi:10.24330/ieja.1488479
Chicago Bouchat, Rachelle R., ve Tricia Muldoon Brown. “Generalized Splittings of Monomial Ideals”. International Electronic Journal of Algebra, Mayıs (Mayıs 2024), 1-13. https://doi.org/10.24330/ieja.1488479.
EndNote Bouchat RR, Brown TM (01 Mayıs 2024) Generalized splittings of monomial ideals. International Electronic Journal of Algebra 1–13.
IEEE R. R. Bouchat ve T. M. Brown, “Generalized splittings of monomial ideals”, IEJA, ss. 1–13, Mayıs 2024, doi: 10.24330/ieja.1488479.
ISNAD Bouchat, Rachelle R. - Brown, Tricia Muldoon. “Generalized Splittings of Monomial Ideals”. International Electronic Journal of Algebra. Mayıs 2024. 1-13. https://doi.org/10.24330/ieja.1488479.
JAMA Bouchat RR, Brown TM. Generalized splittings of monomial ideals. IEJA. 2024;:1–13.
MLA Bouchat, Rachelle R. ve Tricia Muldoon Brown. “Generalized Splittings of Monomial Ideals”. International Electronic Journal of Algebra, 2024, ss. 1-13, doi:10.24330/ieja.1488479.
Vancouver Bouchat RR, Brown TM. Generalized splittings of monomial ideals. IEJA. 2024:1-13.