Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Early Access, 1 - 11
https://doi.org/10.24330/ieja.1518558

Öz

Kaynakça

  • S. K. Berberian, Baer ∗-Rings, Die Grundlehren der mathematischen Wissenschaften, Band 195. Springer-Verlag, New York-Berlin, 1972.
  • G. F. Birkenmeier, J. Y. Kim and J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra, 159(1) (2001), 25-42.
  • G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Extensions of Rings and Modules, Birkhauser/Springer, New York, 2013.
  • R. Hazrat and L. Vas, Baer and Baer ∗-ring characterizations of Leavitt path algebras, J. Pure Appl. Algebra, 222(1) (2018), 39-60.
  • C. Y. Hong, N. K. Kim and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra, 151(3) (2000), 215-226.
  • I. Kaplansky, Rings of Operators, W. A. Benjamin, Inc., New York-Amsterdam, 1968.
  • A. Khairnar and B. N. Waphare, Order properties of generalized projections, Linear Multilinear Algebra, 65(7) (2017), 1446-1461.
  • A. Khairnar and B. N. Waphare, Unitification of weakly p.q.-Baer ∗-rings, Southeast Asian Bull. Math., 42(3) (2018), 387-400.
  • A. Khairnar and B. N. Waphare, Conrad’s partial order on p.q.-Baer ∗-rings, Discuss. Math. Gen. Algebra Appl., 38(2) (2018), 207-219.
  • A. Khairnar and B. N. Waphare, A sheaf representation of principally quasi-Baer ∗-rings, Algebr. Represent. Theory, 22(1) (2019), 79-97.
  • N. K. Thakare and B. N. Waphare, Partial solutions to the open problem of unitification of a weakly Rickart ∗-ring, Indian J. Pure Appl. Math., 28(2) (1997), 189-195.
  • N. K. Thakare and B. N. Waphare, Baer ∗-rings with finitely many elements, J. Combin. Math. Combin. Comput., 26 (1998), 161-164.
  • L. Vas, Class of Baer ∗-rings defined by a relaxed set of axioms, J. Algebra, 297(2) (2006), 470-473.
  • L. Vas, ∗-Clean rings; some clean and almost clean Baer ∗-rings and von Neumann algebras, J. Algebra, 324(12) (2010), 3388-3400.

Unitification of weakly Rickart and weakly p.q.-Baer *-rings

Yıl 2024, Early Access, 1 - 11
https://doi.org/10.24330/ieja.1518558

Öz

S. K. Berberian raised the problem ``Can every weakly Rickart $*$-ring be embedded in a Rickart $*$-ring with preservation of right projections?". Berberian has given a partial solution to this problem. Khairnar and Waphare raised a similar problem for p.q.-Baer $*$-rings and gave a partial solution. In this paper, we give more general partial solutions to both the problems.

Kaynakça

  • S. K. Berberian, Baer ∗-Rings, Die Grundlehren der mathematischen Wissenschaften, Band 195. Springer-Verlag, New York-Berlin, 1972.
  • G. F. Birkenmeier, J. Y. Kim and J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra, 159(1) (2001), 25-42.
  • G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Extensions of Rings and Modules, Birkhauser/Springer, New York, 2013.
  • R. Hazrat and L. Vas, Baer and Baer ∗-ring characterizations of Leavitt path algebras, J. Pure Appl. Algebra, 222(1) (2018), 39-60.
  • C. Y. Hong, N. K. Kim and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra, 151(3) (2000), 215-226.
  • I. Kaplansky, Rings of Operators, W. A. Benjamin, Inc., New York-Amsterdam, 1968.
  • A. Khairnar and B. N. Waphare, Order properties of generalized projections, Linear Multilinear Algebra, 65(7) (2017), 1446-1461.
  • A. Khairnar and B. N. Waphare, Unitification of weakly p.q.-Baer ∗-rings, Southeast Asian Bull. Math., 42(3) (2018), 387-400.
  • A. Khairnar and B. N. Waphare, Conrad’s partial order on p.q.-Baer ∗-rings, Discuss. Math. Gen. Algebra Appl., 38(2) (2018), 207-219.
  • A. Khairnar and B. N. Waphare, A sheaf representation of principally quasi-Baer ∗-rings, Algebr. Represent. Theory, 22(1) (2019), 79-97.
  • N. K. Thakare and B. N. Waphare, Partial solutions to the open problem of unitification of a weakly Rickart ∗-ring, Indian J. Pure Appl. Math., 28(2) (1997), 189-195.
  • N. K. Thakare and B. N. Waphare, Baer ∗-rings with finitely many elements, J. Combin. Math. Combin. Comput., 26 (1998), 161-164.
  • L. Vas, Class of Baer ∗-rings defined by a relaxed set of axioms, J. Algebra, 297(2) (2006), 470-473.
  • L. Vas, ∗-Clean rings; some clean and almost clean Baer ∗-rings and von Neumann algebras, J. Algebra, 324(12) (2010), 3388-3400.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Sanjay More Bu kişi benim

Anil Khairnar Bu kişi benim

B. N. Waphare Bu kişi benim

Erken Görünüm Tarihi 18 Temmuz 2024
Yayımlanma Tarihi
Gönderilme Tarihi 29 Şubat 2024
Kabul Tarihi 15 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Early Access

Kaynak Göster

APA More, S., Khairnar, A., & Waphare, B. N. (2024). Unitification of weakly Rickart and weakly p.q.-Baer *-rings. International Electronic Journal of Algebra1-11. https://doi.org/10.24330/ieja.1518558
AMA More S, Khairnar A, Waphare BN. Unitification of weakly Rickart and weakly p.q.-Baer *-rings. IEJA. Published online 01 Temmuz 2024:1-11. doi:10.24330/ieja.1518558
Chicago More, Sanjay, Anil Khairnar, ve B. N. Waphare. “Unitification of Weakly Rickart and Weakly p.Q.-Baer *-Rings”. International Electronic Journal of Algebra, Temmuz (Temmuz 2024), 1-11. https://doi.org/10.24330/ieja.1518558.
EndNote More S, Khairnar A, Waphare BN (01 Temmuz 2024) Unitification of weakly Rickart and weakly p.q.-Baer *-rings. International Electronic Journal of Algebra 1–11.
IEEE S. More, A. Khairnar, ve B. N. Waphare, “Unitification of weakly Rickart and weakly p.q.-Baer *-rings”, IEJA, ss. 1–11, Temmuz 2024, doi: 10.24330/ieja.1518558.
ISNAD More, Sanjay vd. “Unitification of Weakly Rickart and Weakly p.Q.-Baer *-Rings”. International Electronic Journal of Algebra. Temmuz 2024. 1-11. https://doi.org/10.24330/ieja.1518558.
JAMA More S, Khairnar A, Waphare BN. Unitification of weakly Rickart and weakly p.q.-Baer *-rings. IEJA. 2024;:1–11.
MLA More, Sanjay vd. “Unitification of Weakly Rickart and Weakly p.Q.-Baer *-Rings”. International Electronic Journal of Algebra, 2024, ss. 1-11, doi:10.24330/ieja.1518558.
Vancouver More S, Khairnar A, Waphare BN. Unitification of weakly Rickart and weakly p.q.-Baer *-rings. IEJA. 2024:1-11.