Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Early Access, 1 - 13
https://doi.org/10.24330/ieja.1524262

Öz

Kaynakça

  • I. Basdouri, S. Chouaibi, A. Makhlouf and E. Peyghan, Free Hom-groups, Hom-rings and semisimple modules, arXiv:2101.03333v1 [math.RA] (2021).
  • R. H. Bruck, A Survey of Binary Systems, Springer-Verlag, 1958.
  • N. Bourbaki, Elements of Mathematics, Algebra I, Chapters 1-3, Springer-Verlag, 1989.
  • M. Goze and E. Remm, On the algebraic variety of Hom-Lie algebras, arXiv:1706.02484v1 [math.RA] (2017).
  • J. T. Hartwig, D. Larsson and S. D. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295(2) (2006), 314-361.
  • M. Hassanzadeh, Lagrange's theorem for Hom-groups, Rocky Mountain J. Math., 49(3) (2019), 773-787.
  • J. Jiang, S. K. Mishra and Y. Sheng, Hom-Lie algebras and Hom-Lie groups, integration and differentiation, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 16 (2020), 137 (22 pp).
  • C. Laurent-Gengoux, A. Makhlouf and J. Teles, Universal algebra of a Hom-Lie algebra and group-like elements, J. Pure Appl. Algebra, 222(5) (2018), 1139-1163.
  • A. Makhlouf and S. D. Silvestrov, Hom-algebra stuctures, J. Gen. Lie Theory Appl., 2(2) (2008), 51-64.
  • A. Makhlouf and S. D. Silvestrov, Hom–Lie admissible Hom-coalgebras and Hom–Hopf algebras, Generalized Lie theory in mathematics, physics and beyond, Springer, Berlin, Chapter 17 (2009), 189-206.
  • A. Makhlouf and S. D. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl., 9(4) (2010), 553-589.
  • A. Makhlouf and A. Zahari, Structure and classification of Hom-associative algebras, Acta Comment. Univ. Tartu. Math., 24(1) (2020), 79-102.
  • D. Yau, Hom-bialgebras and comodule Hom-algebras, Int. Electron. J. Algebra, 8 (2010), 45-64.

Hom-associative magmas with applications to Hom-associative magma algebras

Yıl 2024, Early Access, 1 - 13
https://doi.org/10.24330/ieja.1524262

Öz

Let $X$ be a magma, that is a set equipped with a binary operation, and consider a function $\alpha : X \to X$. We say that $X$ is Hom-associative if, for all $x,y,z \in X$, the equality $\alpha(x)(yz) = (xy) \alpha(z)$ holds. For every isomorphism class of magmas of order two, we determine all functions $\alpha$ making $X$ Hom-associative. Furthermore, we find all such $\alpha$ that are endomorphisms of $X$. We also consider versions of these results where the binary operation on $X$ and the function $\alpha$ only are partially defined. We use our findings to construct numerous examples of two-dimensional Hom-associative as well as multiplicative magma algebras.

Kaynakça

  • I. Basdouri, S. Chouaibi, A. Makhlouf and E. Peyghan, Free Hom-groups, Hom-rings and semisimple modules, arXiv:2101.03333v1 [math.RA] (2021).
  • R. H. Bruck, A Survey of Binary Systems, Springer-Verlag, 1958.
  • N. Bourbaki, Elements of Mathematics, Algebra I, Chapters 1-3, Springer-Verlag, 1989.
  • M. Goze and E. Remm, On the algebraic variety of Hom-Lie algebras, arXiv:1706.02484v1 [math.RA] (2017).
  • J. T. Hartwig, D. Larsson and S. D. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295(2) (2006), 314-361.
  • M. Hassanzadeh, Lagrange's theorem for Hom-groups, Rocky Mountain J. Math., 49(3) (2019), 773-787.
  • J. Jiang, S. K. Mishra and Y. Sheng, Hom-Lie algebras and Hom-Lie groups, integration and differentiation, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 16 (2020), 137 (22 pp).
  • C. Laurent-Gengoux, A. Makhlouf and J. Teles, Universal algebra of a Hom-Lie algebra and group-like elements, J. Pure Appl. Algebra, 222(5) (2018), 1139-1163.
  • A. Makhlouf and S. D. Silvestrov, Hom-algebra stuctures, J. Gen. Lie Theory Appl., 2(2) (2008), 51-64.
  • A. Makhlouf and S. D. Silvestrov, Hom–Lie admissible Hom-coalgebras and Hom–Hopf algebras, Generalized Lie theory in mathematics, physics and beyond, Springer, Berlin, Chapter 17 (2009), 189-206.
  • A. Makhlouf and S. D. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl., 9(4) (2010), 553-589.
  • A. Makhlouf and A. Zahari, Structure and classification of Hom-associative algebras, Acta Comment. Univ. Tartu. Math., 24(1) (2020), 79-102.
  • D. Yau, Hom-bialgebras and comodule Hom-algebras, Int. Electron. J. Algebra, 8 (2010), 45-64.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Patrik Lundstrom Bu kişi benim

Erken Görünüm Tarihi 29 Temmuz 2024
Yayımlanma Tarihi
Yayımlandığı Sayı Yıl 2024 Early Access

Kaynak Göster

APA Lundstrom, P. (2024). Hom-associative magmas with applications to Hom-associative magma algebras. International Electronic Journal of Algebra1-13. https://doi.org/10.24330/ieja.1524262
AMA Lundstrom P. Hom-associative magmas with applications to Hom-associative magma algebras. IEJA. Published online 01 Temmuz 2024:1-13. doi:10.24330/ieja.1524262
Chicago Lundstrom, Patrik. “Hom-Associative Magmas With Applications to Hom-Associative Magma Algebras”. International Electronic Journal of Algebra, Temmuz (Temmuz 2024), 1-13. https://doi.org/10.24330/ieja.1524262.
EndNote Lundstrom P (01 Temmuz 2024) Hom-associative magmas with applications to Hom-associative magma algebras. International Electronic Journal of Algebra 1–13.
IEEE P. Lundstrom, “Hom-associative magmas with applications to Hom-associative magma algebras”, IEJA, ss. 1–13, Temmuz 2024, doi: 10.24330/ieja.1524262.
ISNAD Lundstrom, Patrik. “Hom-Associative Magmas With Applications to Hom-Associative Magma Algebras”. International Electronic Journal of Algebra. Temmuz 2024. 1-13. https://doi.org/10.24330/ieja.1524262.
JAMA Lundstrom P. Hom-associative magmas with applications to Hom-associative magma algebras. IEJA. 2024;:1–13.
MLA Lundstrom, Patrik. “Hom-Associative Magmas With Applications to Hom-Associative Magma Algebras”. International Electronic Journal of Algebra, 2024, ss. 1-13, doi:10.24330/ieja.1524262.
Vancouver Lundstrom P. Hom-associative magmas with applications to Hom-associative magma algebras. IEJA. 2024:1-13.