Research Article
BibTex RIS Cite
Year 2024, Early Access, 1 - 13
https://doi.org/10.24330/ieja.1524262

Abstract

References

  • I. Basdouri, S. Chouaibi, A. Makhlouf and E. Peyghan, Free Hom-groups, Hom-rings and semisimple modules, arXiv:2101.03333v1 [math.RA] (2021).
  • R. H. Bruck, A Survey of Binary Systems, Springer-Verlag, 1958.
  • N. Bourbaki, Elements of Mathematics, Algebra I, Chapters 1-3, Springer-Verlag, 1989.
  • M. Goze and E. Remm, On the algebraic variety of Hom-Lie algebras, arXiv:1706.02484v1 [math.RA] (2017).
  • J. T. Hartwig, D. Larsson and S. D. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295(2) (2006), 314-361.
  • M. Hassanzadeh, Lagrange's theorem for Hom-groups, Rocky Mountain J. Math., 49(3) (2019), 773-787.
  • J. Jiang, S. K. Mishra and Y. Sheng, Hom-Lie algebras and Hom-Lie groups, integration and differentiation, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 16 (2020), 137 (22 pp).
  • C. Laurent-Gengoux, A. Makhlouf and J. Teles, Universal algebra of a Hom-Lie algebra and group-like elements, J. Pure Appl. Algebra, 222(5) (2018), 1139-1163.
  • A. Makhlouf and S. D. Silvestrov, Hom-algebra stuctures, J. Gen. Lie Theory Appl., 2(2) (2008), 51-64.
  • A. Makhlouf and S. D. Silvestrov, Hom–Lie admissible Hom-coalgebras and Hom–Hopf algebras, Generalized Lie theory in mathematics, physics and beyond, Springer, Berlin, Chapter 17 (2009), 189-206.
  • A. Makhlouf and S. D. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl., 9(4) (2010), 553-589.
  • A. Makhlouf and A. Zahari, Structure and classification of Hom-associative algebras, Acta Comment. Univ. Tartu. Math., 24(1) (2020), 79-102.
  • D. Yau, Hom-bialgebras and comodule Hom-algebras, Int. Electron. J. Algebra, 8 (2010), 45-64.

Hom-associative magmas with applications to Hom-associative magma algebras

Year 2024, Early Access, 1 - 13
https://doi.org/10.24330/ieja.1524262

Abstract

Let $X$ be a magma, that is a set equipped with a binary operation, and consider a function $\alpha : X \to X$. We say that $X$ is Hom-associative if, for all $x,y,z \in X$, the equality $\alpha(x)(yz) = (xy) \alpha(z)$ holds. For every isomorphism class of magmas of order two, we determine all functions $\alpha$ making $X$ Hom-associative. Furthermore, we find all such $\alpha$ that are endomorphisms of $X$. We also consider versions of these results where the binary operation on $X$ and the function $\alpha$ only are partially defined. We use our findings to construct numerous examples of two-dimensional Hom-associative as well as multiplicative magma algebras.

References

  • I. Basdouri, S. Chouaibi, A. Makhlouf and E. Peyghan, Free Hom-groups, Hom-rings and semisimple modules, arXiv:2101.03333v1 [math.RA] (2021).
  • R. H. Bruck, A Survey of Binary Systems, Springer-Verlag, 1958.
  • N. Bourbaki, Elements of Mathematics, Algebra I, Chapters 1-3, Springer-Verlag, 1989.
  • M. Goze and E. Remm, On the algebraic variety of Hom-Lie algebras, arXiv:1706.02484v1 [math.RA] (2017).
  • J. T. Hartwig, D. Larsson and S. D. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295(2) (2006), 314-361.
  • M. Hassanzadeh, Lagrange's theorem for Hom-groups, Rocky Mountain J. Math., 49(3) (2019), 773-787.
  • J. Jiang, S. K. Mishra and Y. Sheng, Hom-Lie algebras and Hom-Lie groups, integration and differentiation, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 16 (2020), 137 (22 pp).
  • C. Laurent-Gengoux, A. Makhlouf and J. Teles, Universal algebra of a Hom-Lie algebra and group-like elements, J. Pure Appl. Algebra, 222(5) (2018), 1139-1163.
  • A. Makhlouf and S. D. Silvestrov, Hom-algebra stuctures, J. Gen. Lie Theory Appl., 2(2) (2008), 51-64.
  • A. Makhlouf and S. D. Silvestrov, Hom–Lie admissible Hom-coalgebras and Hom–Hopf algebras, Generalized Lie theory in mathematics, physics and beyond, Springer, Berlin, Chapter 17 (2009), 189-206.
  • A. Makhlouf and S. D. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl., 9(4) (2010), 553-589.
  • A. Makhlouf and A. Zahari, Structure and classification of Hom-associative algebras, Acta Comment. Univ. Tartu. Math., 24(1) (2020), 79-102.
  • D. Yau, Hom-bialgebras and comodule Hom-algebras, Int. Electron. J. Algebra, 8 (2010), 45-64.
There are 13 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Patrik Lundstrom This is me

Early Pub Date July 29, 2024
Publication Date
Published in Issue Year 2024 Early Access

Cite

APA Lundstrom, P. (2024). Hom-associative magmas with applications to Hom-associative magma algebras. International Electronic Journal of Algebra1-13. https://doi.org/10.24330/ieja.1524262
AMA Lundstrom P. Hom-associative magmas with applications to Hom-associative magma algebras. IEJA. Published online July 1, 2024:1-13. doi:10.24330/ieja.1524262
Chicago Lundstrom, Patrik. “Hom-Associative Magmas With Applications to Hom-Associative Magma Algebras”. International Electronic Journal of Algebra, July (July 2024), 1-13. https://doi.org/10.24330/ieja.1524262.
EndNote Lundstrom P (July 1, 2024) Hom-associative magmas with applications to Hom-associative magma algebras. International Electronic Journal of Algebra 1–13.
IEEE P. Lundstrom, “Hom-associative magmas with applications to Hom-associative magma algebras”, IEJA, pp. 1–13, July 2024, doi: 10.24330/ieja.1524262.
ISNAD Lundstrom, Patrik. “Hom-Associative Magmas With Applications to Hom-Associative Magma Algebras”. International Electronic Journal of Algebra. July 2024. 1-13. https://doi.org/10.24330/ieja.1524262.
JAMA Lundstrom P. Hom-associative magmas with applications to Hom-associative magma algebras. IEJA. 2024;:1–13.
MLA Lundstrom, Patrik. “Hom-Associative Magmas With Applications to Hom-Associative Magma Algebras”. International Electronic Journal of Algebra, 2024, pp. 1-13, doi:10.24330/ieja.1524262.
Vancouver Lundstrom P. Hom-associative magmas with applications to Hom-associative magma algebras. IEJA. 2024:1-13.