Research Article
BibTex RIS Cite
Year 2024, Early Access, 1 - 25
https://doi.org/10.24330/ieja.1531556

Abstract

References

  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, second ed., Grad. Texts in Math., 13, Springer-Verlag, New York, 1992.
  • A. W. Chatters and C. R. Hajarnavis, Rings with Chain Conditions, Res. Notes in Math., 44, Pitman, Boston, 1980.
  • A. K. Chaturvedi and S. Prakash, Some variants of ascending and descending chain conditions, Comm. Algebra, 49(10) (2021), 4324-4333.
  • J. Dauns and Y. Zhou, Classes of Modules, Pure Appl. Math., Chapman and Hall/CRC, Boca Raton, 2006.
  • A. Facchini and Z. Nazemian, Modules with chain conditions up to isomorphism, J. Algebra, 453 (2016), 578-601.
  • A. Facchini and Z. Nazemian, Artinian dimension and isoradical of modules, J. Algebra, 484 (2017), 66-87.
  • S. M. Javdannezhad, M. Maschizadehand and N. Shirali, On iso-DICC modules, to appear in Comm. Algebra, DOI: https://doi.org/10.1080/00927872.2024.2372374.
  • T. Y. Lam, A First Course in Noncommutative Rings, Grad. Texts in Math., 131, Springer-Verlag, New York, 1991.
  • T. Y. Lam, Lectures on Modules and Rings, Grad. Texts in Math., 189, Springer-Verlag, New York, 1999.
  • M. Shirali and N. Shirali, On parallel krull dimension of modules, Comm. Algebra, 50(12) (2022), 5284-5295.
  • P. F. Smith and M. R. Vedadi, Modules with chain conditions on non-essential submodules, Comm. Algebra, 32(5) (2004), 1881-1894.
  • P. Vamos, The dual of the notion of ``finitely generated", J. London Math. Soc., 43 (1968), 643-646.
  • Y. Zhou, Nonsingular rings with finite type dimension, Trends Math., (1997), 323-333.
  • Y. Zhou, Decomposing modules into direct sums of submodules with types, J. Pure Appl. Algebra, 138(1) (1999), 83-97.

Chain conditions on non-parallel submodules

Year 2024, Early Access, 1 - 25
https://doi.org/10.24330/ieja.1531556

Abstract

In this paper, we investigate modules with ascending and descending chain conditions on non-parallel submodules. We call these modules np-Noetherian and np-Artinian respectively, and give structure theorems for them. It is proved that any np-Artinian module is either atomic or finitely embedded. Also, we give a sufficient condition for np-Noetherian (resp., np-Artinian) modules to be Noetherian (resp., Artinian).
We study ascending (resp., descending) chain condition up to isomorphism on non-parallel submodules as npi-Noetherian (resp., npi-Artinian) modules and characterize these modules. It is shown that any npi-Noetherian module has finite type dimension. Next, we investigate some properties of semiprime right np-Artinian (resp., npi-Artinian) rings.
In particular, it is proved that if $ R $ semiprime ring such that $ J(R) $ is not atomic, then $ R $ is right np-Artinian if and only if it is semisimple.
Further, it is shown that if $ R $ is a semiprime right npi-Artinian ring, then either $ Z(R) $ is atomic or $ R $ is right non-singular. Finally, we investigate when np-Artinian (resp., np-Noetherian) rings and ne-Artinian (resp., ne-Noetherian) rings coincide.

References

  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, second ed., Grad. Texts in Math., 13, Springer-Verlag, New York, 1992.
  • A. W. Chatters and C. R. Hajarnavis, Rings with Chain Conditions, Res. Notes in Math., 44, Pitman, Boston, 1980.
  • A. K. Chaturvedi and S. Prakash, Some variants of ascending and descending chain conditions, Comm. Algebra, 49(10) (2021), 4324-4333.
  • J. Dauns and Y. Zhou, Classes of Modules, Pure Appl. Math., Chapman and Hall/CRC, Boca Raton, 2006.
  • A. Facchini and Z. Nazemian, Modules with chain conditions up to isomorphism, J. Algebra, 453 (2016), 578-601.
  • A. Facchini and Z. Nazemian, Artinian dimension and isoradical of modules, J. Algebra, 484 (2017), 66-87.
  • S. M. Javdannezhad, M. Maschizadehand and N. Shirali, On iso-DICC modules, to appear in Comm. Algebra, DOI: https://doi.org/10.1080/00927872.2024.2372374.
  • T. Y. Lam, A First Course in Noncommutative Rings, Grad. Texts in Math., 131, Springer-Verlag, New York, 1991.
  • T. Y. Lam, Lectures on Modules and Rings, Grad. Texts in Math., 189, Springer-Verlag, New York, 1999.
  • M. Shirali and N. Shirali, On parallel krull dimension of modules, Comm. Algebra, 50(12) (2022), 5284-5295.
  • P. F. Smith and M. R. Vedadi, Modules with chain conditions on non-essential submodules, Comm. Algebra, 32(5) (2004), 1881-1894.
  • P. Vamos, The dual of the notion of ``finitely generated", J. London Math. Soc., 43 (1968), 643-646.
  • Y. Zhou, Nonsingular rings with finite type dimension, Trends Math., (1997), 323-333.
  • Y. Zhou, Decomposing modules into direct sums of submodules with types, J. Pure Appl. Algebra, 138(1) (1999), 83-97.
There are 14 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Nasrin Shirali This is me

Mohammad Maschizadeh This is me

Sayed Malek Javdannezhad This is me

Early Pub Date August 11, 2024
Publication Date
Submission Date February 8, 2024
Acceptance Date July 14, 2024
Published in Issue Year 2024 Early Access

Cite

APA Shirali, N., Maschizadeh, M., & Javdannezhad, S. M. (2024). Chain conditions on non-parallel submodules. International Electronic Journal of Algebra1-25. https://doi.org/10.24330/ieja.1531556
AMA Shirali N, Maschizadeh M, Javdannezhad SM. Chain conditions on non-parallel submodules. IEJA. Published online August 1, 2024:1-25. doi:10.24330/ieja.1531556
Chicago Shirali, Nasrin, Mohammad Maschizadeh, and Sayed Malek Javdannezhad. “Chain Conditions on Non-Parallel Submodules”. International Electronic Journal of Algebra, August (August 2024), 1-25. https://doi.org/10.24330/ieja.1531556.
EndNote Shirali N, Maschizadeh M, Javdannezhad SM (August 1, 2024) Chain conditions on non-parallel submodules. International Electronic Journal of Algebra 1–25.
IEEE N. Shirali, M. Maschizadeh, and S. M. Javdannezhad, “Chain conditions on non-parallel submodules”, IEJA, pp. 1–25, August 2024, doi: 10.24330/ieja.1531556.
ISNAD Shirali, Nasrin et al. “Chain Conditions on Non-Parallel Submodules”. International Electronic Journal of Algebra. August 2024. 1-25. https://doi.org/10.24330/ieja.1531556.
JAMA Shirali N, Maschizadeh M, Javdannezhad SM. Chain conditions on non-parallel submodules. IEJA. 2024;:1–25.
MLA Shirali, Nasrin et al. “Chain Conditions on Non-Parallel Submodules”. International Electronic Journal of Algebra, 2024, pp. 1-25, doi:10.24330/ieja.1531556.
Vancouver Shirali N, Maschizadeh M, Javdannezhad SM. Chain conditions on non-parallel submodules. IEJA. 2024:1-25.