Research Article
BibTex RIS Cite
Year 2024, Early Access, 1 - 20
https://doi.org/10.24330/ieja.1559027

Abstract

References

  • P. Bahiraei, Cotorsion pairs and adjoint functors in the homotopy category of $N$-complexes, J. Algebra Appl., 19(12) (2020), 2050236 (19 pp).
  • M. Dubois-Violette, $d^N=0$: generalized homology, $K$-Theory, 14(4) (1998), 371-404.
  • E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z., 220(4) (1995), 611-633.
  • S. Estrada, Monomial algebras over infinite quivers. Applications to $N$-complexes of modules, Comm. Algebra, 35(10) (2007), 3214-3225.
  • Y. Geng and N. Ding, $\mathcal{W}$-Gorenstein modules, J. Algebra, 325 (2011), 132-146.
  • J. Gillespie, The homotopy category of $N$-complexes is a homotopy category, J. Homotopy Relat. Struct., 10(1) (2015), 93-106.
  • H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189(1-3) (2004), 167-193.
  • H. Holm and P. Jorgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra, 205(2) (2006), 423-445.
  • H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ., 47(4) (2007), 781-808.
  • O. Iyama, K. Kato and J.-i. Miyachi, Derived categories of $N$-complexes, J. Lond. Math. Soc. (2), 96(3) (2017), 687-716.
  • M. M. Kapranov, On the $q$-analog of homological algebra, available at arXiv:q-alg/9611005, (1996).
  • L. Liang, N. Q. Ding and G. Yang, Some remarks on projective generators and injective cogenerators, Acta Math. Sin. (Engl. Ser.), 30(12) (2014), 2063-2078.
  • B. Lu, Strongly $\mathcal W$-Gorenstein complexes, J. Math. Res. Appl., 38(5) (2018), 449-457.
  • B. Lu, Cartan-Eilenberg Gorenstein projective $N$-complexes, Comm. Algebra, 49(9) (2021), 3810-3824.
  • B. Lu. Gorenstein objects in the category of $N$-complexes, J. Algebra Appl., 20(10) (2021), 2150174 (26 pp).
  • B. Lu and A. Daiqing, Cartan-Eilenberg Gorenstein-injective $m$-complexes, AIMS Math., 6(5) (2021), 4306-4318.
  • B. Lu and Z. Di, Gorenstein cohomology of $N$-complexes, J. Algebra Appl., 19(9) (2020), 2050174 (14 pp).
  • B. Lu, Z. Di and Y. Liu, Cartan-Eilenberg $N$-complexes with respect to self-orthogonal subcategories, Front. Math. China, 15(2) (2020), 351-365.
  • B. Lu and Z. Liu, A note on Gorenstein projective complexes, Turkish J. Math., 40(2) (2016), 235-243.
  • B. Lu, J. Wei and Z. Di, $\mathcal{W}$-Gorenstein $N$-complexes, Rocky Mountain J. Math., 49(6) (2019), 1973-1992.
  • P. Ma and X. Yang, Cohomology of torsion and completion of $N$-complexes, J. Korean Math. Soc., 59(2) (2022), 379-405.
  • W. Mayer, A new homology theory. {I}, {II}, Ann. of Math. (2), 43 (1942), 370-380, 594-605.
  • S. Sather-Wagstaff, T. Sharif and D. White, Stability of Gorenstein categories, J. Lond. Math. Soc. (2), 77(2) (2008), 481-502.
  • D. White, Gorenstein projective dimension with respect to a semidualizing module, J. Commut. Algebra, 2(1) (2010), 111-137.
  • D. Xin, J. Chen and X. Zhang, Completely $\mathscr W$-resolved complexes, Comm. Algebra, 41(3) (2013), 1094-1106.
  • G. Yang, Gorenstein projective, injective and flat complexes, Acta Math. Sinica (Chinese Ser.), 54(3) (2011), 451-460.
  • C. Yang and L. Liang, Gorenstein injective and projective complexes with respect to a semidualizing module, Comm. Algebra, 40(9) (2012), 3352-3364.
  • X. Yang and N. Ding, The homotopy category and derived category of $N$-complexes, J. Algebra, 426 (2015), 430-476.
  • X. Yang and T. Cao, Cotorsion pairs in $\mathcal C_N(\mathcal A)$, Algebra Colloq., 24(4) (2017), 577-602.
  • X. Yang and Z. Liu, Gorenstein projective, injective, and flat complexes, Comm. Algebra, 39(5) (2011), 1705-1721.
  • G. Zhao and J. Sun, $\mathcal{VW}$-Gorenstein categories, Turkish J. Math., 40(2) (2016), 365-375.
  • R. Zhao and W. Ren, $\mathcal{VW}$-Gorenstein complexes, Turkish J. Math., 41(3) (2017), 537-547.

Strongly $\mathcal{VW}$-Gorenstein $N$-complexes

Year 2024, Early Access, 1 - 20
https://doi.org/10.24330/ieja.1559027

Abstract

Let $\mathcal{V},\mathcal{W}$ be two classes of $R$-modules. The notion of strongly $\mathcal{VW}$-Gorenstein $N$-complexes is introduced, and under certain mild hypotheses on $\mathcal{V}$ and $\mathcal{W}$, it is shown that an $N$-complex $X$ is strongly $\mathcal{VW}$-Gorenstein if and only if each term of $X$ is a $\mathcal{VW}$-Gorenstein module and $N$-complexes ${\rm Hom}_{R}(V,X)$ and $ Hom_{R}(X,W)$ are $N$-exact for any $V\in\mathcal{V}$ and $W\in\mathcal{W}$. Furthermore, under the same conditions on $\mathcal{V}$ and $\mathcal{W}$, it is proved that an $N$-exact $N$-complex $X$ is $\mathcal{VW}$-Gorenstein if and only if $\mathrm{Z}_{n}^{t}(X)$ is a $\mathcal{VW}$-Gorenstein module for each $n\in\mathbb{Z}$ and each $t=1,2,\ldots,N-1$. Consequently, we show that an $N$-complex $X$ is strongly Gorenstein projective (resp., injective) if and only if $X$ is $N$-exact and ${\rm Z}^t_{n}(X)$ is a Gorenstein projective (resp., injective) module for each $n\in\mathbb{Z}$ and $t=1,2,\ldots,N-1$.

References

  • P. Bahiraei, Cotorsion pairs and adjoint functors in the homotopy category of $N$-complexes, J. Algebra Appl., 19(12) (2020), 2050236 (19 pp).
  • M. Dubois-Violette, $d^N=0$: generalized homology, $K$-Theory, 14(4) (1998), 371-404.
  • E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z., 220(4) (1995), 611-633.
  • S. Estrada, Monomial algebras over infinite quivers. Applications to $N$-complexes of modules, Comm. Algebra, 35(10) (2007), 3214-3225.
  • Y. Geng and N. Ding, $\mathcal{W}$-Gorenstein modules, J. Algebra, 325 (2011), 132-146.
  • J. Gillespie, The homotopy category of $N$-complexes is a homotopy category, J. Homotopy Relat. Struct., 10(1) (2015), 93-106.
  • H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189(1-3) (2004), 167-193.
  • H. Holm and P. Jorgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra, 205(2) (2006), 423-445.
  • H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ., 47(4) (2007), 781-808.
  • O. Iyama, K. Kato and J.-i. Miyachi, Derived categories of $N$-complexes, J. Lond. Math. Soc. (2), 96(3) (2017), 687-716.
  • M. M. Kapranov, On the $q$-analog of homological algebra, available at arXiv:q-alg/9611005, (1996).
  • L. Liang, N. Q. Ding and G. Yang, Some remarks on projective generators and injective cogenerators, Acta Math. Sin. (Engl. Ser.), 30(12) (2014), 2063-2078.
  • B. Lu, Strongly $\mathcal W$-Gorenstein complexes, J. Math. Res. Appl., 38(5) (2018), 449-457.
  • B. Lu, Cartan-Eilenberg Gorenstein projective $N$-complexes, Comm. Algebra, 49(9) (2021), 3810-3824.
  • B. Lu. Gorenstein objects in the category of $N$-complexes, J. Algebra Appl., 20(10) (2021), 2150174 (26 pp).
  • B. Lu and A. Daiqing, Cartan-Eilenberg Gorenstein-injective $m$-complexes, AIMS Math., 6(5) (2021), 4306-4318.
  • B. Lu and Z. Di, Gorenstein cohomology of $N$-complexes, J. Algebra Appl., 19(9) (2020), 2050174 (14 pp).
  • B. Lu, Z. Di and Y. Liu, Cartan-Eilenberg $N$-complexes with respect to self-orthogonal subcategories, Front. Math. China, 15(2) (2020), 351-365.
  • B. Lu and Z. Liu, A note on Gorenstein projective complexes, Turkish J. Math., 40(2) (2016), 235-243.
  • B. Lu, J. Wei and Z. Di, $\mathcal{W}$-Gorenstein $N$-complexes, Rocky Mountain J. Math., 49(6) (2019), 1973-1992.
  • P. Ma and X. Yang, Cohomology of torsion and completion of $N$-complexes, J. Korean Math. Soc., 59(2) (2022), 379-405.
  • W. Mayer, A new homology theory. {I}, {II}, Ann. of Math. (2), 43 (1942), 370-380, 594-605.
  • S. Sather-Wagstaff, T. Sharif and D. White, Stability of Gorenstein categories, J. Lond. Math. Soc. (2), 77(2) (2008), 481-502.
  • D. White, Gorenstein projective dimension with respect to a semidualizing module, J. Commut. Algebra, 2(1) (2010), 111-137.
  • D. Xin, J. Chen and X. Zhang, Completely $\mathscr W$-resolved complexes, Comm. Algebra, 41(3) (2013), 1094-1106.
  • G. Yang, Gorenstein projective, injective and flat complexes, Acta Math. Sinica (Chinese Ser.), 54(3) (2011), 451-460.
  • C. Yang and L. Liang, Gorenstein injective and projective complexes with respect to a semidualizing module, Comm. Algebra, 40(9) (2012), 3352-3364.
  • X. Yang and N. Ding, The homotopy category and derived category of $N$-complexes, J. Algebra, 426 (2015), 430-476.
  • X. Yang and T. Cao, Cotorsion pairs in $\mathcal C_N(\mathcal A)$, Algebra Colloq., 24(4) (2017), 577-602.
  • X. Yang and Z. Liu, Gorenstein projective, injective, and flat complexes, Comm. Algebra, 39(5) (2011), 1705-1721.
  • G. Zhao and J. Sun, $\mathcal{VW}$-Gorenstein categories, Turkish J. Math., 40(2) (2016), 365-375.
  • R. Zhao and W. Ren, $\mathcal{VW}$-Gorenstein complexes, Turkish J. Math., 41(3) (2017), 537-547.
There are 32 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Wenjun Guo This is me

Honghui Jia This is me

Renyu Zhao This is me

Early Pub Date October 1, 2024
Publication Date
Submission Date December 6, 2023
Acceptance Date August 4, 2024
Published in Issue Year 2024 Early Access

Cite

APA Guo, W., Jia, H., & Zhao, R. (2024). Strongly $\mathcal{VW}$-Gorenstein $N$-complexes. International Electronic Journal of Algebra1-20. https://doi.org/10.24330/ieja.1559027
AMA Guo W, Jia H, Zhao R. Strongly $\mathcal{VW}$-Gorenstein $N$-complexes. IEJA. Published online October 1, 2024:1-20. doi:10.24330/ieja.1559027
Chicago Guo, Wenjun, Honghui Jia, and Renyu Zhao. “Strongly $\mathcal{VW}$-Gorenstein $N$-Complexes”. International Electronic Journal of Algebra, October (October 2024), 1-20. https://doi.org/10.24330/ieja.1559027.
EndNote Guo W, Jia H, Zhao R (October 1, 2024) Strongly $\mathcal{VW}$-Gorenstein $N$-complexes. International Electronic Journal of Algebra 1–20.
IEEE W. Guo, H. Jia, and R. Zhao, “Strongly $\mathcal{VW}$-Gorenstein $N$-complexes”, IEJA, pp. 1–20, October 2024, doi: 10.24330/ieja.1559027.
ISNAD Guo, Wenjun et al. “Strongly $\mathcal{VW}$-Gorenstein $N$-Complexes”. International Electronic Journal of Algebra. October 2024. 1-20. https://doi.org/10.24330/ieja.1559027.
JAMA Guo W, Jia H, Zhao R. Strongly $\mathcal{VW}$-Gorenstein $N$-complexes. IEJA. 2024;:1–20.
MLA Guo, Wenjun et al. “Strongly $\mathcal{VW}$-Gorenstein $N$-Complexes”. International Electronic Journal of Algebra, 2024, pp. 1-20, doi:10.24330/ieja.1559027.
Vancouver Guo W, Jia H, Zhao R. Strongly $\mathcal{VW}$-Gorenstein $N$-complexes. IEJA. 2024:1-20.