Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Early Access, 1 - 19
https://doi.org/10.24330/ieja.1571446

Öz

Kaynakça

  • S. F. Ansari and M. Sahai, Unit groups of group algebras of groups of order $20$, Quaest. Math., 44(4) (2021), 503-511.
  • A. Bovdi and L. Erdei, Unitary units in modular group algebras of $2$-groups, Comm. Algebra, 28(2) (2000), 625-630.
  • V. A. Bovdi and A. N. Grishkov, Unitary and symmetric units of a commutative group algebra, Proc. Edinb. Math. Soc. (2), 62(3) (2019), 641-654.
  • L. Creedon and J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{3^{k}}D_{6}$, Int. J. Pure Appl. Math., 45(2) (2008), 315-320.
  • L. Creedon and J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{2^{k}}D_{8}$, Canad. Math. Bull., 54(2) (2011), 237-243.
  • R. A. Ferraz, Simple components of the center of $FG/J(FG)$, Comm. Algebra, 36(9) (2008), 3191-3199.
  • J. Gildea and R. Taylor, Units of the group algebra of the group $C_{n}\times D_{6}$ over any finite field of characteristic $3$, Int. Electron. J. Algebra, 24 (2018), 62-67.
  • K. Kaur and M. Khan, Units in $F_{2}D_{2p}$, J. Algebra Appl., 13(2) (2014), 1350090 (9 pp).
  • N. Makhijani, R. K. Sharma and J. B. Srivastava, A note on units in $\mathbb{F}_{p^m}D_{2p^n}$, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 30(1) (2014), 17-25.
  • N. Makhijani, R. K. Sharma and J. B. Srivastava, Units in $\mathbb{F}_{2^{k}}D_{2n}$, Int. J. Group Theory, 3(3) (2014), 25-34.
  • N. Makhijani, R. K. Sharma and J. B. Srivastava, The unit group of $\mathbb{F}_{q}[D_{30}]$, Serdica Math. J., 41(2-3) (2015), 185-198.
  • S. Malik and R. K. Sharma, Describing the group of units of integral grouprings $\mathbb{Z}D_{8}$ and $\mathbb{Z}D_{12}$, Asian-Eur. J. Math., 17(1) (2024), 2350236 (13 pp).
  • S. Malik, R. K. Sharma and M. Sahai, The structure of the unit group of the group algebras $\mathbb{F}_{3^{k}}D_{6n}$ and $\mathbb{F}_{q}D_{42}$, Ann. Math. Inform., DOI: 10.33039/ami.2024.08.001.
  • G. Mittal and R. K. Sharma, Wedderburn decomposition of a semisimple group algebra $\mathbb{F}_{q}G$ from a subalgebra of factor group of $G$, Int. Electron. J. Algebra, 32 (2022), 91-100.
  • D. S. Passman, The Algebraic Structure of Group Rings, Wiley Interscience, New York, 1977.
  • C. Polcino Milies and S. K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, 2002.
  • M. Sahai and S. F. Ansari, Unit groups of group algebras of certain dihedral groups-II, Asian-Eur. J. Math., 12(4) (2019), 1950066 (12 pp).
  • M. Sahai and S. F. Ansari, Unit groups of finite group algebras of abelian groups of order at most $16$, Asian-Eur. J. Math., 14(3) (2021), 2150030 (17 pp).
  • M. Sahai and S. F. Ansari, Unit groups of group algebras of groups of order $18$, Comm. Algebra, 49(8) (2021), 3273-3282.
  • R. K. Sharma, J. B. Srivastava and M. Khan, The unit group of $FS_{3}$, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 23(2) (2007), 129-142.
  • G. Tang, Y. Wei and Y. Li, Unit groups of group algebras of some small groups, Czechoslovak Math. J., 64(139)(1) (2014), 149-157.

The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$

Yıl 2024, Early Access, 1 - 19
https://doi.org/10.24330/ieja.1571446

Öz

Let $\mathbb{F}_{q}$ be a finite field of characteristic $p>0$ with $|\mathbb{F}_{q}|=q=p^{k}$ and $\mathcal{U}(\mathbb{F}_{q}G)$ be the unit group of the group algebra $\mathbb{F}_{q}G$ for some group $G$. There are $6$ groups of order $42$ up to isomorphism. In this paper, we provide a characterization of $\mathcal{U}(\mathbb{F}_{3^{k}}(C_{3}\times D_{2n}))$ and establish the structures of the unit groups of some finite group algebras of groups of order $42$.

Kaynakça

  • S. F. Ansari and M. Sahai, Unit groups of group algebras of groups of order $20$, Quaest. Math., 44(4) (2021), 503-511.
  • A. Bovdi and L. Erdei, Unitary units in modular group algebras of $2$-groups, Comm. Algebra, 28(2) (2000), 625-630.
  • V. A. Bovdi and A. N. Grishkov, Unitary and symmetric units of a commutative group algebra, Proc. Edinb. Math. Soc. (2), 62(3) (2019), 641-654.
  • L. Creedon and J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{3^{k}}D_{6}$, Int. J. Pure Appl. Math., 45(2) (2008), 315-320.
  • L. Creedon and J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{2^{k}}D_{8}$, Canad. Math. Bull., 54(2) (2011), 237-243.
  • R. A. Ferraz, Simple components of the center of $FG/J(FG)$, Comm. Algebra, 36(9) (2008), 3191-3199.
  • J. Gildea and R. Taylor, Units of the group algebra of the group $C_{n}\times D_{6}$ over any finite field of characteristic $3$, Int. Electron. J. Algebra, 24 (2018), 62-67.
  • K. Kaur and M. Khan, Units in $F_{2}D_{2p}$, J. Algebra Appl., 13(2) (2014), 1350090 (9 pp).
  • N. Makhijani, R. K. Sharma and J. B. Srivastava, A note on units in $\mathbb{F}_{p^m}D_{2p^n}$, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 30(1) (2014), 17-25.
  • N. Makhijani, R. K. Sharma and J. B. Srivastava, Units in $\mathbb{F}_{2^{k}}D_{2n}$, Int. J. Group Theory, 3(3) (2014), 25-34.
  • N. Makhijani, R. K. Sharma and J. B. Srivastava, The unit group of $\mathbb{F}_{q}[D_{30}]$, Serdica Math. J., 41(2-3) (2015), 185-198.
  • S. Malik and R. K. Sharma, Describing the group of units of integral grouprings $\mathbb{Z}D_{8}$ and $\mathbb{Z}D_{12}$, Asian-Eur. J. Math., 17(1) (2024), 2350236 (13 pp).
  • S. Malik, R. K. Sharma and M. Sahai, The structure of the unit group of the group algebras $\mathbb{F}_{3^{k}}D_{6n}$ and $\mathbb{F}_{q}D_{42}$, Ann. Math. Inform., DOI: 10.33039/ami.2024.08.001.
  • G. Mittal and R. K. Sharma, Wedderburn decomposition of a semisimple group algebra $\mathbb{F}_{q}G$ from a subalgebra of factor group of $G$, Int. Electron. J. Algebra, 32 (2022), 91-100.
  • D. S. Passman, The Algebraic Structure of Group Rings, Wiley Interscience, New York, 1977.
  • C. Polcino Milies and S. K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, 2002.
  • M. Sahai and S. F. Ansari, Unit groups of group algebras of certain dihedral groups-II, Asian-Eur. J. Math., 12(4) (2019), 1950066 (12 pp).
  • M. Sahai and S. F. Ansari, Unit groups of finite group algebras of abelian groups of order at most $16$, Asian-Eur. J. Math., 14(3) (2021), 2150030 (17 pp).
  • M. Sahai and S. F. Ansari, Unit groups of group algebras of groups of order $18$, Comm. Algebra, 49(8) (2021), 3273-3282.
  • R. K. Sharma, J. B. Srivastava and M. Khan, The unit group of $FS_{3}$, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 23(2) (2007), 129-142.
  • G. Tang, Y. Wei and Y. Li, Unit groups of group algebras of some small groups, Czechoslovak Math. J., 64(139)(1) (2014), 149-157.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Sandeep Malik Bu kişi benim

Rajendra Kumar Sharma

Erken Görünüm Tarihi 21 Ekim 2024
Yayımlanma Tarihi
Gönderilme Tarihi 28 Şubat 2024
Kabul Tarihi 21 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Early Access

Kaynak Göster

APA Malik, S., & Sharma, R. K. (2024). The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$. International Electronic Journal of Algebra1-19. https://doi.org/10.24330/ieja.1571446
AMA Malik S, Sharma RK. The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$. IEJA. Published online 01 Ekim 2024:1-19. doi:10.24330/ieja.1571446
Chicago Malik, Sandeep, ve Rajendra Kumar Sharma. “The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$”. International Electronic Journal of Algebra, Ekim (Ekim 2024), 1-19. https://doi.org/10.24330/ieja.1571446.
EndNote Malik S, Sharma RK (01 Ekim 2024) The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$. International Electronic Journal of Algebra 1–19.
IEEE S. Malik ve R. K. Sharma, “The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$”, IEJA, ss. 1–19, Ekim 2024, doi: 10.24330/ieja.1571446.
ISNAD Malik, Sandeep - Sharma, Rajendra Kumar. “The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$”. International Electronic Journal of Algebra. Ekim 2024. 1-19. https://doi.org/10.24330/ieja.1571446.
JAMA Malik S, Sharma RK. The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$. IEJA. 2024;:1–19.
MLA Malik, Sandeep ve Rajendra Kumar Sharma. “The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$”. International Electronic Journal of Algebra, 2024, ss. 1-19, doi:10.24330/ieja.1571446.
Vancouver Malik S, Sharma RK. The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$. IEJA. 2024:1-19.