Research Article
BibTex RIS Cite
Year 2022, Volume: 32 Issue: 32, 141 - 156, 16.07.2022
https://doi.org/10.24330/ieja.1102387

Abstract

References

  • L. V. An, T. G. Nam and N. S. Tung, On quasi-morphic rings and related problems, Southeast Asian Bull. Math., 40(1) (2016), 23-34.
  • V. Camillo and W. K. Nicholson, Quasi-morphic rings, J. Algebra Appl., 6(5) (2007), 789-799.
  • V. Camillo, W. K. Nicholson and Z. Wang, Left quasi-morphic rings, J. Algebra Appl., 7(6) (2008), 725-733.
  • H. Chen, Regular elements in quasi-morphic rings, Comm. Algebra, 39 (2011), 1356-1364.
  • A. J. Diesl, T. J. Dorsey and W. W. McGovern, A characterization of certain morphic trivial extensions, J. Algebra Appl., 10(4) (2011), 623-642.
  • G. Ehrlich, Units and one-sided units in regular rings, Trans. Amer. Math. Soc., 216 (1976), 81-90.
  • K. R. Goodearl, Von-Neumann Regular Rings, Pitman, Boston, 1979.
  • Q. Huang and J. Chen, $\pi$-morphic rings, Kyungpook Math. J., 47(3) (2007), 363-372.
  • T. K. Lee and Y. Zhou, Morphic rings and unit regular rings, J. Pure Appl. Algebra, 210 (2007), 501-510.
  • T. K. Lee and Y. Zhou, Regularity and morphic property of rings, J. Algebra, 322 (2009), 1072-1085.
  • T. K. Lee and Y. Zhou, A theorem on unit regular rings, Canad. Math. Bull., 53(2) (2010), 321-326.
  • W. K. Nicholson and E. S. Campos, Rings with the dual of the isomorphism theorem, J. Algebra, 271 (2004), 391-406.

On (quasi-)morphic property of skew polynomial rings

Year 2022, Volume: 32 Issue: 32, 141 - 156, 16.07.2022
https://doi.org/10.24330/ieja.1102387

Abstract

The main objective of this paper is to study (quasi-)morphic property of skew polynomial rings. Let $R$ be a ring, $\sigma$ be a ring homomorphism on $R$ and $n\geq 1$. We show that $R$ inherits the quasi-morphic property from $R[x;\sigma]/(x^{n+1})$.
It is also proved that the morphic property over $R[x;\sigma]/(x^{n+1})$ implies that $R$ is a regular ring. Moreover, we characterize a unit-regular ring $R$ via the morphic property of $R[x;\sigma]/(x^{n+1})$. We also investigate the relationship between strongly regular rings and centrally morphic rings. For instance, we show that for a domain $R$, $R[x;\sigma]/(x^{n+1})$ is (left) centrally morphic if and only if $R$ is a division ring and $\sigma(r)=u^{-1}ru$ for some $u\in R$. Examples which delimit and illustrate our results are provided.

References

  • L. V. An, T. G. Nam and N. S. Tung, On quasi-morphic rings and related problems, Southeast Asian Bull. Math., 40(1) (2016), 23-34.
  • V. Camillo and W. K. Nicholson, Quasi-morphic rings, J. Algebra Appl., 6(5) (2007), 789-799.
  • V. Camillo, W. K. Nicholson and Z. Wang, Left quasi-morphic rings, J. Algebra Appl., 7(6) (2008), 725-733.
  • H. Chen, Regular elements in quasi-morphic rings, Comm. Algebra, 39 (2011), 1356-1364.
  • A. J. Diesl, T. J. Dorsey and W. W. McGovern, A characterization of certain morphic trivial extensions, J. Algebra Appl., 10(4) (2011), 623-642.
  • G. Ehrlich, Units and one-sided units in regular rings, Trans. Amer. Math. Soc., 216 (1976), 81-90.
  • K. R. Goodearl, Von-Neumann Regular Rings, Pitman, Boston, 1979.
  • Q. Huang and J. Chen, $\pi$-morphic rings, Kyungpook Math. J., 47(3) (2007), 363-372.
  • T. K. Lee and Y. Zhou, Morphic rings and unit regular rings, J. Pure Appl. Algebra, 210 (2007), 501-510.
  • T. K. Lee and Y. Zhou, Regularity and morphic property of rings, J. Algebra, 322 (2009), 1072-1085.
  • T. K. Lee and Y. Zhou, A theorem on unit regular rings, Canad. Math. Bull., 53(2) (2010), 321-326.
  • W. K. Nicholson and E. S. Campos, Rings with the dual of the isomorphism theorem, J. Algebra, 271 (2004), 391-406.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Najmeh Dehghanı This is me

Publication Date July 16, 2022
Published in Issue Year 2022 Volume: 32 Issue: 32

Cite

APA Dehghanı, N. (2022). On (quasi-)morphic property of skew polynomial rings. International Electronic Journal of Algebra, 32(32), 141-156. https://doi.org/10.24330/ieja.1102387
AMA Dehghanı N. On (quasi-)morphic property of skew polynomial rings. IEJA. July 2022;32(32):141-156. doi:10.24330/ieja.1102387
Chicago Dehghanı, Najmeh. “On (quasi-)morphic Property of Skew Polynomial Rings”. International Electronic Journal of Algebra 32, no. 32 (July 2022): 141-56. https://doi.org/10.24330/ieja.1102387.
EndNote Dehghanı N (July 1, 2022) On (quasi-)morphic property of skew polynomial rings. International Electronic Journal of Algebra 32 32 141–156.
IEEE N. Dehghanı, “On (quasi-)morphic property of skew polynomial rings”, IEJA, vol. 32, no. 32, pp. 141–156, 2022, doi: 10.24330/ieja.1102387.
ISNAD Dehghanı, Najmeh. “On (quasi-)morphic Property of Skew Polynomial Rings”. International Electronic Journal of Algebra 32/32 (July 2022), 141-156. https://doi.org/10.24330/ieja.1102387.
JAMA Dehghanı N. On (quasi-)morphic property of skew polynomial rings. IEJA. 2022;32:141–156.
MLA Dehghanı, Najmeh. “On (quasi-)morphic Property of Skew Polynomial Rings”. International Electronic Journal of Algebra, vol. 32, no. 32, 2022, pp. 141-56, doi:10.24330/ieja.1102387.
Vancouver Dehghanı N. On (quasi-)morphic property of skew polynomial rings. IEJA. 2022;32(32):141-56.