Research Article
BibTex RIS Cite
Year 2024, Volume: 35 Issue: 35, 20 - 31, 09.01.2024
https://doi.org/10.24330/ieja.1388822

Abstract

References

  • A. Azizi, F. Elmouhib and M. Talbi, 5-rank of ambiguous class groups of quintic Kummer extensions, Proc. Indian Acad. Sci. Math. Sci., 132(12) (2022), 14 pp.
  • F. Elmouhib, M. Talbi and A. Azizi, On the capitulation problem of some pure metacyclic fields of degree 20., Palest. J. Math., 11(1) (2022), 260-267.
  • E. Hecke, Lectures on the Theory of Algebraic Numbers, Graduate Texts in Mathematics, 77, Springer-Verlag, New York-Berlin, 1981.\label{Hec}
  • M. Kulkarni, D. Majumdar and B. Sury, $l$-class groups of cyclic extension of prime degree $l$, J. Ramanujan Math. Soc., 30(4) (2015), 413-454.\label{Mani}
  • L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New-York, 1982.\label{washint}
  • The PARI Group, PARI/GP, Version 2.4.9, Bordeaux, 2017, http://pari.math.u-bordeaux.fr\label{PARI}

On the capitulation problem of some pure metacyclic fields of degree 20 II

Year 2024, Volume: 35 Issue: 35, 20 - 31, 09.01.2024
https://doi.org/10.24330/ieja.1388822

Abstract

Let $n$ be a $5^{th}$ power-free natural number and $k_0\,=\,\mathbb{Q}(\zeta_5)$ be the cyclotomic field generated by a primitive $5^{th}$ root of unity $\zeta_5$. Then $k\,=\,\mathbb{Q}(\sqrt[5]{n},\zeta_5)$ is a pure metacyclic field of absolute degree $20$. In the case that $k$ possesses a $5$-class group $C_{k,5}$ of type $(5,5)$ and all the classes are ambiguous under the action of $Gal(k/k_0)$, the capitulation of $5$-ideal classes of $k$ in its unramified cyclic quintic extensions is determined.

References

  • A. Azizi, F. Elmouhib and M. Talbi, 5-rank of ambiguous class groups of quintic Kummer extensions, Proc. Indian Acad. Sci. Math. Sci., 132(12) (2022), 14 pp.
  • F. Elmouhib, M. Talbi and A. Azizi, On the capitulation problem of some pure metacyclic fields of degree 20., Palest. J. Math., 11(1) (2022), 260-267.
  • E. Hecke, Lectures on the Theory of Algebraic Numbers, Graduate Texts in Mathematics, 77, Springer-Verlag, New York-Berlin, 1981.\label{Hec}
  • M. Kulkarni, D. Majumdar and B. Sury, $l$-class groups of cyclic extension of prime degree $l$, J. Ramanujan Math. Soc., 30(4) (2015), 413-454.\label{Mani}
  • L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New-York, 1982.\label{washint}
  • The PARI Group, PARI/GP, Version 2.4.9, Bordeaux, 2017, http://pari.math.u-bordeaux.fr\label{PARI}
There are 6 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory, Group Theory and Generalisations, Category Theory, K Theory, Homological Algebra
Journal Section Articles
Authors

Fouad Elmouhib This is me

Mohamed Talbi This is me

Abdelmalek Azizi This is me

Early Pub Date November 10, 2023
Publication Date January 9, 2024
Published in Issue Year 2024 Volume: 35 Issue: 35

Cite

APA Elmouhib, F., Talbi, M., & Azizi, A. (2024). On the capitulation problem of some pure metacyclic fields of degree 20 II. International Electronic Journal of Algebra, 35(35), 20-31. https://doi.org/10.24330/ieja.1388822
AMA Elmouhib F, Talbi M, Azizi A. On the capitulation problem of some pure metacyclic fields of degree 20 II. IEJA. January 2024;35(35):20-31. doi:10.24330/ieja.1388822
Chicago Elmouhib, Fouad, Mohamed Talbi, and Abdelmalek Azizi. “On the Capitulation Problem of Some Pure Metacyclic Fields of Degree 20 II”. International Electronic Journal of Algebra 35, no. 35 (January 2024): 20-31. https://doi.org/10.24330/ieja.1388822.
EndNote Elmouhib F, Talbi M, Azizi A (January 1, 2024) On the capitulation problem of some pure metacyclic fields of degree 20 II. International Electronic Journal of Algebra 35 35 20–31.
IEEE F. Elmouhib, M. Talbi, and A. Azizi, “On the capitulation problem of some pure metacyclic fields of degree 20 II”, IEJA, vol. 35, no. 35, pp. 20–31, 2024, doi: 10.24330/ieja.1388822.
ISNAD Elmouhib, Fouad et al. “On the Capitulation Problem of Some Pure Metacyclic Fields of Degree 20 II”. International Electronic Journal of Algebra 35/35 (January 2024), 20-31. https://doi.org/10.24330/ieja.1388822.
JAMA Elmouhib F, Talbi M, Azizi A. On the capitulation problem of some pure metacyclic fields of degree 20 II. IEJA. 2024;35:20–31.
MLA Elmouhib, Fouad et al. “On the Capitulation Problem of Some Pure Metacyclic Fields of Degree 20 II”. International Electronic Journal of Algebra, vol. 35, no. 35, 2024, pp. 20-31, doi:10.24330/ieja.1388822.
Vancouver Elmouhib F, Talbi M, Azizi A. On the capitulation problem of some pure metacyclic fields of degree 20 II. IEJA. 2024;35(35):20-31.