Research Article
BibTex RIS Cite
Year 2024, Volume: 36 Issue: 36, 1 - 15, 12.07.2024
https://doi.org/10.24330/ieja.1404435

Abstract

References

  • D. L. Costa, Unique factorization in modules and symmetric algebras, Trans. Amer. Math. Soc., 224(2) (1976), 267-280.
  • I. Ernanto, H. Marubayashi, A. Ueda and S. Wahyuni, Positively graded rings which are unique factorization rings, Vietnam J. Math., 49 (2021), 1037-1041.
  • I. Ernanto, A. Ueda, I. E. Wijayanti and Sutopo, Some remarks on strongly graded modules, submitted for publication, 2022.
  • R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
  • C. P. Lu, Factorial modules, Rocky Mountain J. Math., 7 (1977), 125-139.
  • H. Marubayashi, S. Wahyuni, I. E. Wijayanti and I. Ernanto, Strongly graded rings which are maximal orders, Sci. Math. Jpn., 82 (2019), 207-210.
  • C. Nastasescu and F. van Oystaeyen, Graded Ring Theory, North-Holland Mathematical Library, 28, North-Holland Publishing Co., Amsterdam-New York, 1982.
  • A. M. Nicolas, Modules factoriels, Bull. Sci. Math. (2), 95 (1971), 33-52.
  • A. M. Nicolas, Extensions factorielles et modules factorables, Bull. Sci. Math. (2), 98 (1974), 117-143.
  • M. M. Nurwigantara, I. E. Wijayanti, H. Marubayashi and S. Wahyuni, Krull modules and completely integrally closed modules, J. Algebra Appl., 21(1) (2022), 2350038 (14 pp).
  • S. Wahyuni, H. Marubayashi, I. Ernanto and Sutopo, Strongly graded rings which are generalized Dedekind rings, J. Algebra Appl., 19(3) (2020), 2050043 (8 pp).
  • S. Wahyuni, H. Marubayashi, I. Ernanto and I. P. Y. Prabhadika, On unique factorization modules: a submodule approach, Axioms, 11(6) (2022), 288 (7 pp).
  • I. E. Wijayanti, H. Marubayashi and Sutopo, Positively graded rings which are maximal orders and generalized Dedekind prime rings, J. Algebra Appl., 19(8) (2020), 2050143 (11 pp).
  • I. E. Wijayanti, H. Marubayashi, I. Ernanto and Sutopo, Finitely generated torsion-free modules over integrally closed domains, Comm. Algebra, 48(8) (2020), 3597-3607.
  • I. E. Wijayanti, H. Marubayashi, I. Ernanto and Sutopo, Arithmetic modules over generalized Dedekind domains, J. Algebra Appl., 21(3) (2022), 2250045 (14 pp).

Strongly Graded Modules and Positively Graded Modules which are Unique Factorization Modules

Year 2024, Volume: 36 Issue: 36, 1 - 15, 12.07.2024
https://doi.org/10.24330/ieja.1404435

Abstract

Let $M=\oplus_{n\in \mathbb{Z}}M_{n}$ be a strongly graded module over strongly graded ring $D=\oplus_{n\in \mathbb{Z}} D_{n}$. In this paper, we
prove that if $M_{0}$ is a unique factorization module (UFM for short) over $D_{0}$ and $D$ is a unique factorization domain (UFD for short), then $M$ is a UFM over $D$. Furthermore, if $D_{0}$ is a Noetherian domain, we give a necessary and sufficient condition for a positively graded module $L=\oplus_{n\in \mathbb{Z}_{0}}M_{n}$ to be a UFM over positively graded domain $R=\oplus_{n\in \mathbb{Z}_{0}}D_{n}$.

References

  • D. L. Costa, Unique factorization in modules and symmetric algebras, Trans. Amer. Math. Soc., 224(2) (1976), 267-280.
  • I. Ernanto, H. Marubayashi, A. Ueda and S. Wahyuni, Positively graded rings which are unique factorization rings, Vietnam J. Math., 49 (2021), 1037-1041.
  • I. Ernanto, A. Ueda, I. E. Wijayanti and Sutopo, Some remarks on strongly graded modules, submitted for publication, 2022.
  • R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
  • C. P. Lu, Factorial modules, Rocky Mountain J. Math., 7 (1977), 125-139.
  • H. Marubayashi, S. Wahyuni, I. E. Wijayanti and I. Ernanto, Strongly graded rings which are maximal orders, Sci. Math. Jpn., 82 (2019), 207-210.
  • C. Nastasescu and F. van Oystaeyen, Graded Ring Theory, North-Holland Mathematical Library, 28, North-Holland Publishing Co., Amsterdam-New York, 1982.
  • A. M. Nicolas, Modules factoriels, Bull. Sci. Math. (2), 95 (1971), 33-52.
  • A. M. Nicolas, Extensions factorielles et modules factorables, Bull. Sci. Math. (2), 98 (1974), 117-143.
  • M. M. Nurwigantara, I. E. Wijayanti, H. Marubayashi and S. Wahyuni, Krull modules and completely integrally closed modules, J. Algebra Appl., 21(1) (2022), 2350038 (14 pp).
  • S. Wahyuni, H. Marubayashi, I. Ernanto and Sutopo, Strongly graded rings which are generalized Dedekind rings, J. Algebra Appl., 19(3) (2020), 2050043 (8 pp).
  • S. Wahyuni, H. Marubayashi, I. Ernanto and I. P. Y. Prabhadika, On unique factorization modules: a submodule approach, Axioms, 11(6) (2022), 288 (7 pp).
  • I. E. Wijayanti, H. Marubayashi and Sutopo, Positively graded rings which are maximal orders and generalized Dedekind prime rings, J. Algebra Appl., 19(8) (2020), 2050143 (11 pp).
  • I. E. Wijayanti, H. Marubayashi, I. Ernanto and Sutopo, Finitely generated torsion-free modules over integrally closed domains, Comm. Algebra, 48(8) (2020), 3597-3607.
  • I. E. Wijayanti, H. Marubayashi, I. Ernanto and Sutopo, Arithmetic modules over generalized Dedekind domains, J. Algebra Appl., 21(3) (2022), 2250045 (14 pp).
There are 15 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Iwan Ernanto This is me

Indah E. Wijayanti This is me

Akira Ueda This is me

Early Pub Date December 22, 2023
Publication Date July 12, 2024
Published in Issue Year 2024 Volume: 36 Issue: 36

Cite

APA Ernanto, I., Wijayanti, I. E., & Ueda, A. (2024). Strongly Graded Modules and Positively Graded Modules which are Unique Factorization Modules. International Electronic Journal of Algebra, 36(36), 1-15. https://doi.org/10.24330/ieja.1404435
AMA Ernanto I, Wijayanti IE, Ueda A. Strongly Graded Modules and Positively Graded Modules which are Unique Factorization Modules. IEJA. July 2024;36(36):1-15. doi:10.24330/ieja.1404435
Chicago Ernanto, Iwan, Indah E. Wijayanti, and Akira Ueda. “Strongly Graded Modules and Positively Graded Modules Which Are Unique Factorization Modules”. International Electronic Journal of Algebra 36, no. 36 (July 2024): 1-15. https://doi.org/10.24330/ieja.1404435.
EndNote Ernanto I, Wijayanti IE, Ueda A (July 1, 2024) Strongly Graded Modules and Positively Graded Modules which are Unique Factorization Modules. International Electronic Journal of Algebra 36 36 1–15.
IEEE I. Ernanto, I. E. Wijayanti, and A. Ueda, “Strongly Graded Modules and Positively Graded Modules which are Unique Factorization Modules”, IEJA, vol. 36, no. 36, pp. 1–15, 2024, doi: 10.24330/ieja.1404435.
ISNAD Ernanto, Iwan et al. “Strongly Graded Modules and Positively Graded Modules Which Are Unique Factorization Modules”. International Electronic Journal of Algebra 36/36 (July 2024), 1-15. https://doi.org/10.24330/ieja.1404435.
JAMA Ernanto I, Wijayanti IE, Ueda A. Strongly Graded Modules and Positively Graded Modules which are Unique Factorization Modules. IEJA. 2024;36:1–15.
MLA Ernanto, Iwan et al. “Strongly Graded Modules and Positively Graded Modules Which Are Unique Factorization Modules”. International Electronic Journal of Algebra, vol. 36, no. 36, 2024, pp. 1-15, doi:10.24330/ieja.1404435.
Vancouver Ernanto I, Wijayanti IE, Ueda A. Strongly Graded Modules and Positively Graded Modules which are Unique Factorization Modules. IEJA. 2024;36(36):1-15.