Year 2024,
Volume: 36 Issue: 36, 51 - 65, 12.07.2024
Bijan Taerı
Mohammad Reza Vedadı
References
- A. W. Chatters, The restricted minimum condition in Noetherian hereditary rings, J. London Math. Soc. (2), 4 (1971), 83-87.
- I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J., 17 (1950), 27-42.
- K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, London Math. Soc. Stud. Texts, 61
Cambridge University Press, Cambridge, 2004.
- S. K. Jain, A. K. Srivastava and A. A. Tuganbaev, Cyclic Modules and the Structure of Rings, Oxford Math. Monogr., Oxford University Press, Oxford, 2012.
- A. Karami Z. and M. R. Vedadi, On the restricted minimum condition for rings, Mediterr. J. Math., 18(1) (2021), 9 (17 pp).
- A. Karami Z. and M. R. Vedadi, Restricted minimum condition for group-rings and matrix extensions, Comm. Algebra, 51(1) (2023), 168-177.
- B. Kiraly, On group rings with restricted minimum condition, Ann. Math. Inform., 34 (2007), 47-49.
- M. T. Koşan and J. Zemlicka, On modules and rings with the restricted minimum condition, Colloq. Math.,
140(1) (2015), 75-86.
- T. Y. Lam, Lectures on Modules and Rings, Grad. Texts in Math., 189, Springer-Verlag, New York, 1999.
- D. McCarthy, Infinite groups whose proper quotient groups are finite. I, Comm. Pure Appl. Math., 21 (1968), 545-562.
- D. McCarthy, Infinite groups whose proper quotient groups are finite. II, Comm. Pure Appl. Math., 23 (1970), 767-789.
- A. Ju. Olshanskii, Infinite groups with cyclic subgroups, (Russian), Dokl. Akad. Nauk SSSR, 245(4) (1979), 785-787.
- A. Ju. Olshanskii, An infinite group with subgroups of prime orders, (Russian), Izv. Akad. Nauk. SSSR Ser. Mat., 44(2) (1980), 309-321.
- A. Ju. Olshanskii, Groups of bounded period with subgroups of prime order, (Russian), Algebra i Logika, 21(5) (1982), 553-618.
- A. J. Ornstein, Rings with restricted minimum condition, Proc. Amer. Math. Soc., 19 (1968), 1145-1150.
- D. H. Paek, Chain conditions for subgroups of infinite order or index, J. Algebra, 249(2) (2002), 291-305.
- D. J. S. Robinson, A Course in the Theory of Groups, Grad. Texts in Math., 80, Springer-Verlag, New York, 1996.
- W. Rudin and H. Schneider, Idempotents in group rings, Duke Math. J., 31 (1964), 585-602.
- J. S. Wilson, Groups with every proper quotient finite, Proc. Cambridge Philos. Soc., 69 (1971), 373-391.
- E. I. Zel'manov, Solution of the restricted Burnside problem for groups of odd exponent, (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 54(1) (1990), 42-59, 221; translation in
Math. USSR-Izv., 36(1) (1991), 41-60.
- E. I. Zel'manov, Solution of the restricted Burnside problem for 2-groups, (Russian), Mat. Sb., 182(4) (1991), 568-592; translation in
Math. USSR-Sb., 72(2) (1992), 543-565.
Restricted-finite groups with some applications in group rings
Year 2024,
Volume: 36 Issue: 36, 51 - 65, 12.07.2024
Bijan Taerı
Mohammad Reza Vedadı
Abstract
We carry out a study of groups $G$ in which the index of any infinite subgroup is finite. We call them restricted-finite groups and
characterize finitely generated not torsion restricted-finite groups. We show that every infinite restricted-finite abelian group is isomorphic to
$ \mathbb{Z}\times K$ or $\mathbb{Z}_{p^\infty}\times K$, where $K$ is a finite group and $p$ is a prime number.
We also prove that a group $G$ is infinitely generated restricted-finite
if and only if $G = AT$ where $A$ and $T$ are subgroups of $G$ such that $A$ is normal quasi-cyclic and $T$ is finite.
As an application of our results, we show that if $G$ is not torsion with finite $G'$ and the group-ring $RG$ has restricted minimum condition, then $R$ is a semisimple ring and $G\cong T\rtimes\mathbb{Z} $, where $T$ is finite whose order is unit in $R$.
The converse is also true with certain conditions including $G = T\times \mathbb{Z} $.
References
- A. W. Chatters, The restricted minimum condition in Noetherian hereditary rings, J. London Math. Soc. (2), 4 (1971), 83-87.
- I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J., 17 (1950), 27-42.
- K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, London Math. Soc. Stud. Texts, 61
Cambridge University Press, Cambridge, 2004.
- S. K. Jain, A. K. Srivastava and A. A. Tuganbaev, Cyclic Modules and the Structure of Rings, Oxford Math. Monogr., Oxford University Press, Oxford, 2012.
- A. Karami Z. and M. R. Vedadi, On the restricted minimum condition for rings, Mediterr. J. Math., 18(1) (2021), 9 (17 pp).
- A. Karami Z. and M. R. Vedadi, Restricted minimum condition for group-rings and matrix extensions, Comm. Algebra, 51(1) (2023), 168-177.
- B. Kiraly, On group rings with restricted minimum condition, Ann. Math. Inform., 34 (2007), 47-49.
- M. T. Koşan and J. Zemlicka, On modules and rings with the restricted minimum condition, Colloq. Math.,
140(1) (2015), 75-86.
- T. Y. Lam, Lectures on Modules and Rings, Grad. Texts in Math., 189, Springer-Verlag, New York, 1999.
- D. McCarthy, Infinite groups whose proper quotient groups are finite. I, Comm. Pure Appl. Math., 21 (1968), 545-562.
- D. McCarthy, Infinite groups whose proper quotient groups are finite. II, Comm. Pure Appl. Math., 23 (1970), 767-789.
- A. Ju. Olshanskii, Infinite groups with cyclic subgroups, (Russian), Dokl. Akad. Nauk SSSR, 245(4) (1979), 785-787.
- A. Ju. Olshanskii, An infinite group with subgroups of prime orders, (Russian), Izv. Akad. Nauk. SSSR Ser. Mat., 44(2) (1980), 309-321.
- A. Ju. Olshanskii, Groups of bounded period with subgroups of prime order, (Russian), Algebra i Logika, 21(5) (1982), 553-618.
- A. J. Ornstein, Rings with restricted minimum condition, Proc. Amer. Math. Soc., 19 (1968), 1145-1150.
- D. H. Paek, Chain conditions for subgroups of infinite order or index, J. Algebra, 249(2) (2002), 291-305.
- D. J. S. Robinson, A Course in the Theory of Groups, Grad. Texts in Math., 80, Springer-Verlag, New York, 1996.
- W. Rudin and H. Schneider, Idempotents in group rings, Duke Math. J., 31 (1964), 585-602.
- J. S. Wilson, Groups with every proper quotient finite, Proc. Cambridge Philos. Soc., 69 (1971), 373-391.
- E. I. Zel'manov, Solution of the restricted Burnside problem for groups of odd exponent, (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 54(1) (1990), 42-59, 221; translation in
Math. USSR-Izv., 36(1) (1991), 41-60.
- E. I. Zel'manov, Solution of the restricted Burnside problem for 2-groups, (Russian), Mat. Sb., 182(4) (1991), 568-592; translation in
Math. USSR-Sb., 72(2) (1992), 543-565.