Yıl 2024,
Cilt: 36 Sayı: 36, 66 - 72, 12.07.2024
Victor López Solís
,
Marlennhi Moreno Vıllanueva
Kaynakça
- I. N. Herstein, Noncommutative Rings, Carus Math. Monogr., 15, Mathematical Association of America, Washington, DC, 1994.
- N. Jacobson, A Kronecker factorization theorem for Cayley algebras and the exceptional simple Jordan algebra, Amer. J. Math., 76 (1954), 447-452.
- N. Jacobson, Structure and Representations of Jordan Algebras, Amer. Math. Soc. Colloq. Publ., American Mathematical Society, Providence, RI, 1968.
- N. Jacobson, Basic Algebra II, W. H. Freeman and Co., San Francisco, CA, 1980.
- I. Kaplansky, Semi-simple alternative rings, Portugal. Math., 10 (1951), 37-50.
- M. C. López-Díaz and I. P. Shestakov, Representations of exceptional simple alternative superalgebras of characteristic 3, Trans. Amer. Math. Soc., 354(7) (2002), 2745-2758.
- M. C. López-Díaz and I. P. Shestakov, Representations of exceptional simple Jordan superalgebras of characteristic 3, Comm. Algebra, 33(1) (2005), 331-337.
- V. H. López Solís, Kronecker factorization theorems for alternative superalgebras, J. Algebra, 528 (2019), 311-338.
- V. H. López Solís, On a problem by Nathan Jacobson for Malcev algebras, arXiv:2106.01155.
- V. H. López Solís, Kronecker factorization theorems for the exceptional Malcev algebra, Preprint.
- V. H. López Solís and I. P. Shestakov, On a problem by Nathan Jacobson, Rev. Mat. Iberoam., 38(4) (2022), 1219-1238.
- C. Martínez and E. Zelmanov, A Kronecker factorization theorem for the exceptional Jordan superalgebra, J. Pure Appl. Algebra, 177(1) (2003), 71-78.
- K. McCrimmon, A Taste of Jordan Algebras, Universitext, Springer-Verlag, New York, 2004.
- S. V. Pchelintsev, O. V. Shashkov and I. P. Shestakov, Right alternative bimodules over Cayley algebra and coordinatization theorem, J. Algebra, 572 (2021), 111-128.
- M. A. Yglesias Jauregui, V. H. López Solís, B. M. Cerna Maguiña and V. A. Pocoy Yauri,
Bimódulos asociativos unitarios irreducibles sobre la álgebra de las matrices $n\times n$, https://repositorio.unasam.edu.pe/handle/UNASAM/4736, (2018).
A categories equivalence of associative bimodules
Yıl 2024,
Cilt: 36 Sayı: 36, 66 - 72, 12.07.2024
Victor López Solís
,
Marlennhi Moreno Vıllanueva
Öz
In this paper we use the classical Wedderburn's Kronecker Factorization Theorem to prove that category of bimodules over $B$ and the category of bimodules over $M_{n}(B)$ are equivalent, where $B$ is some unital associative algebra. In addition to this, we classify the irreducible bimodules over $M_{n}(F).$
Kaynakça
- I. N. Herstein, Noncommutative Rings, Carus Math. Monogr., 15, Mathematical Association of America, Washington, DC, 1994.
- N. Jacobson, A Kronecker factorization theorem for Cayley algebras and the exceptional simple Jordan algebra, Amer. J. Math., 76 (1954), 447-452.
- N. Jacobson, Structure and Representations of Jordan Algebras, Amer. Math. Soc. Colloq. Publ., American Mathematical Society, Providence, RI, 1968.
- N. Jacobson, Basic Algebra II, W. H. Freeman and Co., San Francisco, CA, 1980.
- I. Kaplansky, Semi-simple alternative rings, Portugal. Math., 10 (1951), 37-50.
- M. C. López-Díaz and I. P. Shestakov, Representations of exceptional simple alternative superalgebras of characteristic 3, Trans. Amer. Math. Soc., 354(7) (2002), 2745-2758.
- M. C. López-Díaz and I. P. Shestakov, Representations of exceptional simple Jordan superalgebras of characteristic 3, Comm. Algebra, 33(1) (2005), 331-337.
- V. H. López Solís, Kronecker factorization theorems for alternative superalgebras, J. Algebra, 528 (2019), 311-338.
- V. H. López Solís, On a problem by Nathan Jacobson for Malcev algebras, arXiv:2106.01155.
- V. H. López Solís, Kronecker factorization theorems for the exceptional Malcev algebra, Preprint.
- V. H. López Solís and I. P. Shestakov, On a problem by Nathan Jacobson, Rev. Mat. Iberoam., 38(4) (2022), 1219-1238.
- C. Martínez and E. Zelmanov, A Kronecker factorization theorem for the exceptional Jordan superalgebra, J. Pure Appl. Algebra, 177(1) (2003), 71-78.
- K. McCrimmon, A Taste of Jordan Algebras, Universitext, Springer-Verlag, New York, 2004.
- S. V. Pchelintsev, O. V. Shashkov and I. P. Shestakov, Right alternative bimodules over Cayley algebra and coordinatization theorem, J. Algebra, 572 (2021), 111-128.
- M. A. Yglesias Jauregui, V. H. López Solís, B. M. Cerna Maguiña and V. A. Pocoy Yauri,
Bimódulos asociativos unitarios irreducibles sobre la álgebra de las matrices $n\times n$, https://repositorio.unasam.edu.pe/handle/UNASAM/4736, (2018).