Let $R$ be a commutative ring with nonzero identity, let $\I (R)$ be the set of all
ideals of $R$ and $\delta : \I (R)\rightarrow\I (R) $ be a function. Then $\delta$ is called an expansion function of ideals of $R$ if whenever $L, I, J$ are ideals of $R$ with $J \subseteq I$, we have $L \subseteq\delta(L)$ and $\delta(J)\subseteq\delta(I)$. In this paper, we present the concept of $\dt$-ideals in commutative rings. A proper ideal $I$ of $R$ is called a $\dt$-ideal if whenever $a$, $b$ $\in R$ with $ab\in I$ and $a\notin \delta (0)$, we have $b\in I$.
Our purpose is to extend the concept of $n$-ideals to $\dt$-ideals of commutative
rings. Then we investigate the basic properties of $\dt$-ideals and also, we
give many examples about $\dt$-ideals.
Prime ideal $\delta$-primary ideal $n$-ideal $\dt$-ideal trivial ring extension
Birincil Dil | İngilizce |
---|---|
Konular | Cebir ve Sayı Teorisi |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 17 Şubat 2024 |
Yayımlanma Tarihi | 12 Temmuz 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 36 Sayı: 36 |