Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 36 Sayı: 36, 194 - 205, 12.07.2024
https://doi.org/10.24330/ieja.1438748

Öz

Kaynakça

  • A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc., 64 (1948), 552-593.
  • L. Carini, I. R. Hentzel and G. M. Piacentini Cattaneo, Degree four identities not implied by commutativity, Comm. Algebra, 16(2) (1988), 339-356.
  • I. Correa and I. R. Hentzel, Commutative non associative nil algebras satisfying an identity of degree four, Preprint (2023).
  • M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices II, Duke Math. J., 27 (1960), 21-31.
  • D. P. Jacobs, S. V. Muddana and A. J. Offutt, A computer algebra system for nonassociative identities, Hadronic mechanics and nonpotential interactions, Nova Science Publishers, Inc., Commack, NY, Part 1 (Cedar Falls, IA, 1990) (1992), 185-195.
  • D. P. Jacobs, D. Lee, S. V. Muddana, A. J. Offutt, K. Prabhu and T. Whiteley, Albert's User Guide, Version 3.0., Department of Computer Science, Clemson University, 1996.
  • J. M. Osborn, Commutative non-associative algebras and identities of degree four, Canadian J. Math., 20 (1968), 769-794.
  • C. Rojas-Bruna, Trace forms and ideals on commutative algebras satisfying an identity of degree four, Rocky Mountain J. Math., 43(4) (2013), 1325-1336.
  • R. D. Schafer, An Introduction to Nonassociative Algebras, Pure Appl. Math., 22, Academic Press, New York-London, 1966.

Idempotents and zero divisors in commutative algebras satisfying an identity of degree four

Yıl 2024, Cilt: 36 Sayı: 36, 194 - 205, 12.07.2024
https://doi.org/10.24330/ieja.1438748

Öz

We study commutative algebras satisfying the identity
$ ((wx)y)z+((wy)z)x+((wz)x)y-((wy)x)z- ((wx)z)y-((wz)y)x = 0. $ We assume
characteristic of the field $\neq 2,3.$ We prove that given any $\lambda \in F,$ there exists a commutative algebra with idempotent $e,$ which satisfies the identity, and has $\lambda $ as an eigen value of the multiplication operator $L_e$. For algebras with idempotent, the containment relations for the product of the eigen spaces are not as precise as they are for Jordan or power-associative algebras. A great part of this paper is calculating these containment relations.

Kaynakça

  • A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc., 64 (1948), 552-593.
  • L. Carini, I. R. Hentzel and G. M. Piacentini Cattaneo, Degree four identities not implied by commutativity, Comm. Algebra, 16(2) (1988), 339-356.
  • I. Correa and I. R. Hentzel, Commutative non associative nil algebras satisfying an identity of degree four, Preprint (2023).
  • M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices II, Duke Math. J., 27 (1960), 21-31.
  • D. P. Jacobs, S. V. Muddana and A. J. Offutt, A computer algebra system for nonassociative identities, Hadronic mechanics and nonpotential interactions, Nova Science Publishers, Inc., Commack, NY, Part 1 (Cedar Falls, IA, 1990) (1992), 185-195.
  • D. P. Jacobs, D. Lee, S. V. Muddana, A. J. Offutt, K. Prabhu and T. Whiteley, Albert's User Guide, Version 3.0., Department of Computer Science, Clemson University, 1996.
  • J. M. Osborn, Commutative non-associative algebras and identities of degree four, Canadian J. Math., 20 (1968), 769-794.
  • C. Rojas-Bruna, Trace forms and ideals on commutative algebras satisfying an identity of degree four, Rocky Mountain J. Math., 43(4) (2013), 1325-1336.
  • R. D. Schafer, An Introduction to Nonassociative Algebras, Pure Appl. Math., 22, Academic Press, New York-London, 1966.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Manuel Arenas Bu kişi benim

Ivan Correa Bu kişi benim

Irvin Roy Hentzel

Alicia Labra Bu kişi benim

Erken Görünüm Tarihi 17 Şubat 2024
Yayımlanma Tarihi 12 Temmuz 2024
Gönderilme Tarihi 19 Ekim 2023
Kabul Tarihi 6 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 36 Sayı: 36

Kaynak Göster

APA Arenas, M., Correa, I., Hentzel, I. R., Labra, A. (2024). Idempotents and zero divisors in commutative algebras satisfying an identity of degree four. International Electronic Journal of Algebra, 36(36), 194-205. https://doi.org/10.24330/ieja.1438748
AMA Arenas M, Correa I, Hentzel IR, Labra A. Idempotents and zero divisors in commutative algebras satisfying an identity of degree four. IEJA. Temmuz 2024;36(36):194-205. doi:10.24330/ieja.1438748
Chicago Arenas, Manuel, Ivan Correa, Irvin Roy Hentzel, ve Alicia Labra. “Idempotents and Zero Divisors in Commutative Algebras Satisfying an Identity of Degree Four”. International Electronic Journal of Algebra 36, sy. 36 (Temmuz 2024): 194-205. https://doi.org/10.24330/ieja.1438748.
EndNote Arenas M, Correa I, Hentzel IR, Labra A (01 Temmuz 2024) Idempotents and zero divisors in commutative algebras satisfying an identity of degree four. International Electronic Journal of Algebra 36 36 194–205.
IEEE M. Arenas, I. Correa, I. R. Hentzel, ve A. Labra, “Idempotents and zero divisors in commutative algebras satisfying an identity of degree four”, IEJA, c. 36, sy. 36, ss. 194–205, 2024, doi: 10.24330/ieja.1438748.
ISNAD Arenas, Manuel vd. “Idempotents and Zero Divisors in Commutative Algebras Satisfying an Identity of Degree Four”. International Electronic Journal of Algebra 36/36 (Temmuz 2024), 194-205. https://doi.org/10.24330/ieja.1438748.
JAMA Arenas M, Correa I, Hentzel IR, Labra A. Idempotents and zero divisors in commutative algebras satisfying an identity of degree four. IEJA. 2024;36:194–205.
MLA Arenas, Manuel vd. “Idempotents and Zero Divisors in Commutative Algebras Satisfying an Identity of Degree Four”. International Electronic Journal of Algebra, c. 36, sy. 36, 2024, ss. 194-05, doi:10.24330/ieja.1438748.
Vancouver Arenas M, Correa I, Hentzel IR, Labra A. Idempotents and zero divisors in commutative algebras satisfying an identity of degree four. IEJA. 2024;36(36):194-205.