Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 36 Sayı: 36, 101 - 120, 12.07.2024
https://doi.org/10.24330/ieja.1476650

Öz

Kaynakça

  • J. Abuhlail and H. Hroub, PS-hollow representations of modules over commutative rings, J. Algebra Appl., 21 (2022), 2250243 (18 pp).
  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second Edition, Graduate Texts in Mathematics, 13, Springer-Verlag, New York, 1992.
  • L. Bican, T. Kepka and P. Nˇemec, Rings, Modules, and Preradicals, Lecture Notes in Pure and Applied Mathematics, 75, Marcel Dekker, Inc., New York, 1982.
  • S. Ceken, M. Alkan and P. F. Smith, Second modules over noncommutative rings, Comm. Algebra, 41(1) (2013), 83-98.
  • J. S. Golan, Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Mathematics, 29, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986.
  • F. Raggi, J. R. Montes, H. Rincon, R. Fernandez-Alonso and C. Signoret, The lattice structure of preradicals, Comm. Algebra, 30(3) (2002), 1533-1544.
  • F. Raggi, J. R. Montes, H. Rincon, R. Fernandez-Alonso and C. Signoret, The lattice structure of preradicals II. Partitions, J. Algebra Appl., 1(2) (2002), 201-214.
  • F. Raggi, J. R. Montes, H. Rinc´on, R. Fern´andez-Alonso and C. Signoret, The lattice structure of preradicals III. Operators, J. Pure Appl. Algebra, 190 (2004), 251-265.
  • B. Stenstrom, Rings of Quotients, An introduction to methods of ring theory, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975.
  • S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno), 37 (2001), 273-278.

Second modules relative to subclasses of preradicals of $R$-Mod

Yıl 2024, Cilt: 36 Sayı: 36, 101 - 120, 12.07.2024
https://doi.org/10.24330/ieja.1476650

Öz

We study the concept of second module and extend it to more general environments. We also provide descriptions of simple left semiartinian, left local rings, semisimple and simple rings in terms of their $\mathscr A$-second modules with respect to a preradical class.

Kaynakça

  • J. Abuhlail and H. Hroub, PS-hollow representations of modules over commutative rings, J. Algebra Appl., 21 (2022), 2250243 (18 pp).
  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second Edition, Graduate Texts in Mathematics, 13, Springer-Verlag, New York, 1992.
  • L. Bican, T. Kepka and P. Nˇemec, Rings, Modules, and Preradicals, Lecture Notes in Pure and Applied Mathematics, 75, Marcel Dekker, Inc., New York, 1982.
  • S. Ceken, M. Alkan and P. F. Smith, Second modules over noncommutative rings, Comm. Algebra, 41(1) (2013), 83-98.
  • J. S. Golan, Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Mathematics, 29, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986.
  • F. Raggi, J. R. Montes, H. Rincon, R. Fernandez-Alonso and C. Signoret, The lattice structure of preradicals, Comm. Algebra, 30(3) (2002), 1533-1544.
  • F. Raggi, J. R. Montes, H. Rincon, R. Fernandez-Alonso and C. Signoret, The lattice structure of preradicals II. Partitions, J. Algebra Appl., 1(2) (2002), 201-214.
  • F. Raggi, J. R. Montes, H. Rinc´on, R. Fern´andez-Alonso and C. Signoret, The lattice structure of preradicals III. Operators, J. Pure Appl. Algebra, 190 (2004), 251-265.
  • B. Stenstrom, Rings of Quotients, An introduction to methods of ring theory, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975.
  • S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno), 37 (2001), 273-278.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Luis Fernando García Mora

Hugo Alberto Rincon Mejia

Erken Görünüm Tarihi 2 Mayıs 2024
Yayımlanma Tarihi 12 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 36 Sayı: 36

Kaynak Göster

APA García Mora, L. F., & Rincon Mejia, H. A. (2024). Second modules relative to subclasses of preradicals of $R$-Mod. International Electronic Journal of Algebra, 36(36), 101-120. https://doi.org/10.24330/ieja.1476650
AMA García Mora LF, Rincon Mejia HA. Second modules relative to subclasses of preradicals of $R$-Mod. IEJA. Temmuz 2024;36(36):101-120. doi:10.24330/ieja.1476650
Chicago García Mora, Luis Fernando, ve Hugo Alberto Rincon Mejia. “Second Modules Relative to Subclasses of Preradicals of $R$-Mod”. International Electronic Journal of Algebra 36, sy. 36 (Temmuz 2024): 101-20. https://doi.org/10.24330/ieja.1476650.
EndNote García Mora LF, Rincon Mejia HA (01 Temmuz 2024) Second modules relative to subclasses of preradicals of $R$-Mod. International Electronic Journal of Algebra 36 36 101–120.
IEEE L. F. García Mora ve H. A. Rincon Mejia, “Second modules relative to subclasses of preradicals of $R$-Mod”, IEJA, c. 36, sy. 36, ss. 101–120, 2024, doi: 10.24330/ieja.1476650.
ISNAD García Mora, Luis Fernando - Rincon Mejia, Hugo Alberto. “Second Modules Relative to Subclasses of Preradicals of $R$-Mod”. International Electronic Journal of Algebra 36/36 (Temmuz 2024), 101-120. https://doi.org/10.24330/ieja.1476650.
JAMA García Mora LF, Rincon Mejia HA. Second modules relative to subclasses of preradicals of $R$-Mod. IEJA. 2024;36:101–120.
MLA García Mora, Luis Fernando ve Hugo Alberto Rincon Mejia. “Second Modules Relative to Subclasses of Preradicals of $R$-Mod”. International Electronic Journal of Algebra, c. 36, sy. 36, 2024, ss. 101-20, doi:10.24330/ieja.1476650.
Vancouver García Mora LF, Rincon Mejia HA. Second modules relative to subclasses of preradicals of $R$-Mod. IEJA. 2024;36(36):101-20.