Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 36 Sayı: 36, 206 - 214, 12.07.2024
https://doi.org/10.24330/ieja.1476690

Öz

Kaynakça

  • L. An and Q. Zhang, Finite metahamiltonian p-groups, J. Algebra, 442 (2015), 23-35.
  • V. A. Belonogov, Finite groups with three classes of maximal subgroups, Math. USSR-Sb., 59(1) (1988), 223-236.
  • M. Brescia, M. Ferrara and M. Trombetti, The structure of metahamiltonian groups, Jpn. J. Math., 18(1) (2023), 1-65.
  • L. Cui, W. Meng, J. Lu and W. Zheng, A new criterion for solvability of a finite group by the sum of orders of non-normal subgroups, Colloq. Math., 174(2) (2023), 169-176.
  • T. De Medts and M. Tarnauceanu, Finite groups determined by an inequality of the orders of their subgroups, Bull. Belg. Math. Soc. Simon Stevin, 15(4) (2008), 699-704.
  • R. Dedekind, Ueber Gruppen, deren sammtliche Theiler Normaltheiler sind, Math. Ann., 48 (1897), 548-561.
  • X. Fang and L. An, A classification of finite metahamiltonian p-groups, Commun. Math. Stat., 9(2) (2021), 239-260.
  • M. Garonzi and M. Patassini, Inequalities detecting structural properties of a finite group, Comm. Algebra, 45(2) (2017), 677-687.
  • I. N. Herstein, A remark on finite groups, Proc. Amer. Math. Soc, 9(2) (1958), 255-257.
  • M. Herzog, P. Longobardi and M. Maj, On a criterion for solvability of a finite group, Comm. Algebra, 49(5) (2021), 2234-2240.
  • W. Meng and J. Lu, On the sum of non-cyclic subgroups order in a finite group, Comm. Algebra, 52(3) (2024), 1084-1096.
  • M. Suzuki, Group Theory II, Fundamental Principles of Mathematical Sciences, 248, Springer-Verlag, New York, 1986.
  • M. Tarnauceanu, Finite groups determined by an inequality of the orders of their subgroups II, Comm. Algebra, 45(11) (2017), 4865-4868.
  • M. Tarnauceanu, On the solvability of a finite group by the sum of subgroup orders, Bull. Korean Math. Soc., 57 (2020), 1475-1479.
  • M. Tarnauceanu, On the supersolvability of a finite group by the sum of subgroup orders, J. Algebra Appl., 21 (2022), 2250232 (7 pp).

On the sum of orders of non-cyclic and non-normal subgroups in a finite group

Yıl 2024, Cilt: 36 Sayı: 36, 206 - 214, 12.07.2024
https://doi.org/10.24330/ieja.1476690

Öz

Let $G$ be a finite group and $\mathcal{C}(G)$ denote the set of all non-normal non-cyclic subgroups of $G$. In this paper, the function $\delta_c(G) =\frac{1}{|G|}\sum\limits_{H\in\mathcal{C}(G)}|H|$ is introduced. In fact, we prove that, if $\delta_c(G)\leq \frac{10}{3}$, then either $G\cong A_5$, or $G$ is solvable. We also find some examples of finite groups $G$ with $\delta_c(G)\leq \frac{10}{3}$.

Kaynakça

  • L. An and Q. Zhang, Finite metahamiltonian p-groups, J. Algebra, 442 (2015), 23-35.
  • V. A. Belonogov, Finite groups with three classes of maximal subgroups, Math. USSR-Sb., 59(1) (1988), 223-236.
  • M. Brescia, M. Ferrara and M. Trombetti, The structure of metahamiltonian groups, Jpn. J. Math., 18(1) (2023), 1-65.
  • L. Cui, W. Meng, J. Lu and W. Zheng, A new criterion for solvability of a finite group by the sum of orders of non-normal subgroups, Colloq. Math., 174(2) (2023), 169-176.
  • T. De Medts and M. Tarnauceanu, Finite groups determined by an inequality of the orders of their subgroups, Bull. Belg. Math. Soc. Simon Stevin, 15(4) (2008), 699-704.
  • R. Dedekind, Ueber Gruppen, deren sammtliche Theiler Normaltheiler sind, Math. Ann., 48 (1897), 548-561.
  • X. Fang and L. An, A classification of finite metahamiltonian p-groups, Commun. Math. Stat., 9(2) (2021), 239-260.
  • M. Garonzi and M. Patassini, Inequalities detecting structural properties of a finite group, Comm. Algebra, 45(2) (2017), 677-687.
  • I. N. Herstein, A remark on finite groups, Proc. Amer. Math. Soc, 9(2) (1958), 255-257.
  • M. Herzog, P. Longobardi and M. Maj, On a criterion for solvability of a finite group, Comm. Algebra, 49(5) (2021), 2234-2240.
  • W. Meng and J. Lu, On the sum of non-cyclic subgroups order in a finite group, Comm. Algebra, 52(3) (2024), 1084-1096.
  • M. Suzuki, Group Theory II, Fundamental Principles of Mathematical Sciences, 248, Springer-Verlag, New York, 1986.
  • M. Tarnauceanu, Finite groups determined by an inequality of the orders of their subgroups II, Comm. Algebra, 45(11) (2017), 4865-4868.
  • M. Tarnauceanu, On the solvability of a finite group by the sum of subgroup orders, Bull. Korean Math. Soc., 57 (2020), 1475-1479.
  • M. Tarnauceanu, On the supersolvability of a finite group by the sum of subgroup orders, J. Algebra Appl., 21 (2022), 2250232 (7 pp).
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Haowen Chen Bu kişi benim

Boru Zhang Bu kişi benim

Wei Meng

Erken Görünüm Tarihi 2 Mayıs 2024
Yayımlanma Tarihi 12 Temmuz 2024
Gönderilme Tarihi 10 Ocak 2024
Kabul Tarihi 21 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 36 Sayı: 36

Kaynak Göster

APA Chen, H., Zhang, B., & Meng, W. (2024). On the sum of orders of non-cyclic and non-normal subgroups in a finite group. International Electronic Journal of Algebra, 36(36), 206-214. https://doi.org/10.24330/ieja.1476690
AMA Chen H, Zhang B, Meng W. On the sum of orders of non-cyclic and non-normal subgroups in a finite group. IEJA. Temmuz 2024;36(36):206-214. doi:10.24330/ieja.1476690
Chicago Chen, Haowen, Boru Zhang, ve Wei Meng. “On the Sum of Orders of Non-Cyclic and Non-Normal Subgroups in a Finite Group”. International Electronic Journal of Algebra 36, sy. 36 (Temmuz 2024): 206-14. https://doi.org/10.24330/ieja.1476690.
EndNote Chen H, Zhang B, Meng W (01 Temmuz 2024) On the sum of orders of non-cyclic and non-normal subgroups in a finite group. International Electronic Journal of Algebra 36 36 206–214.
IEEE H. Chen, B. Zhang, ve W. Meng, “On the sum of orders of non-cyclic and non-normal subgroups in a finite group”, IEJA, c. 36, sy. 36, ss. 206–214, 2024, doi: 10.24330/ieja.1476690.
ISNAD Chen, Haowen vd. “On the Sum of Orders of Non-Cyclic and Non-Normal Subgroups in a Finite Group”. International Electronic Journal of Algebra 36/36 (Temmuz 2024), 206-214. https://doi.org/10.24330/ieja.1476690.
JAMA Chen H, Zhang B, Meng W. On the sum of orders of non-cyclic and non-normal subgroups in a finite group. IEJA. 2024;36:206–214.
MLA Chen, Haowen vd. “On the Sum of Orders of Non-Cyclic and Non-Normal Subgroups in a Finite Group”. International Electronic Journal of Algebra, c. 36, sy. 36, 2024, ss. 206-14, doi:10.24330/ieja.1476690.
Vancouver Chen H, Zhang B, Meng W. On the sum of orders of non-cyclic and non-normal subgroups in a finite group. IEJA. 2024;36(36):206-14.