Research Article
BibTex RIS Cite
Year 2025, Volume: 37 Issue: 37, 297 - 312, 14.01.2025
https://doi.org/10.24330/ieja.1555106

Abstract

References

  • A. R. Aliabad, M. Badie and S. Nazari, An extension of $z$-ideals and ${z}^{0}$-ideals, Hacet. J. Math. Stat., 49(1) (2020), 254-272.
  • A. R. Aliabad and R. Mohamadian, On $z$-ideals and ${z}^{0}$-ideals of power series rings, J. Math. Ext., 7(2) (2013), 93-108.
  • A. R. Aliabad and R. Mohamadian, Prime $z$-ideal rings (pz-Rings), Bull. Iranian Math. Soc., 48(3) (2022), 1177-1192.
  • M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., 1969.
  • A. Benhissi and A. Maatallah, A question about higher order $z$-ideals in commutative rings, Quaest. Math., 43(8) (2020), 1155-1157.
  • T. Dube and O. Ighedo, On lattices of $z$-ideals of function rings, Math. Slovaca, 68(2) (2018), 271-284.
  • Z. A. El-Bast and F. P. Smith, Multiplication Modules, Comm. Algebra, 16(4) (1988), 755-779.
  • L. Gillman and M. Jerison, Rings of Continuous Functions, Univ. Ser. Higher Math., D. Van Nostrand Co., New York, 1960.
  • J. B. Harrehdashti and H. F. Moghimi, Complete homomorphisms between the lattices of radical submodules, Math. Rep., 20(70)(2) (2018), 187-200.
  • O. Ighedo and W. Wm. McGovern, On the lattice of $z$-ideals of a commutative ring, Topology Appl., 273 (2020), 106969 (16 pp).
  • C. W. Kohls, Ideals in rings of continuous functions, Fund. Math., 45 (1957), 28-50.
  • C. P. Lu, A module whose prime spectrum has the surjective natural map, Houston J. Math., 33(1) (2007), 125-143.
  • G. Mason, $z$-ideals and prime ideals, J. Algebra, 26 (1973), 280-297.
  • G. Mason, Prime $z$-ideals of $C(X)$ and related rings, Canad, Math. Bull., 23(4) (1980), 437-443.
  • H. F. Moghimi and J. B. Harehdashti, Mappings between lattices of radical submodules, Int. Electron. J. Algebra, 19 (2016), 35-48.
  • H. F. Moghimi and M. Noferesti, Mappings between the lattices of varieties of submodules, J. Algebra Relat. Topics, 10(1) (2022), 35-50.
  • H. F. Moghimi and M. Noferesti, On the distributivity of the lattice of radical submodules, J. Mahani Math. Res., 13(1) (2024), 347-355.
  • M. E. Moore and S. J. Smith, Prime and radical submodules of modules over commutative rings, Comm. Algebra, 30(10) (2002), 5037-5064.
  • J. R. Munkres, Topology: A First Course, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975.
  • M. Noferesti, H. F. Moghimi and M. H. Hosseini, Mappings between the lattices of saturated submodules with respect to a prime ideal, Hacet. J. Math. Stat., 50(1) (2021), 243-254.
  • J. Ohm and D. E. Rush, Content modules and algebras, Math. Scand., 31 (1972), 49-68.
  • V. S. Ramamurthi, On the injectivity and flatness of certain cyclic modules, Proc. Amer. Math. Soc., 48 (1975), 21-25.
  • P. F. Smith, Mapping between module lattices, Int. Electron. J. Algebra, 15 (2014), 173-195.
  • P. F. Smith, Complete homomorphisms between module lattices, Int. Electron. J. Algebra, 16 (2014), 16-31.
  • P. F. Smith, Anti-homomorphisms between module lattices, J. Commut. Algebra, 7(4) (2015), 567-592.
  • E. M. Vechtomov, Modules of all functions over the ring of continuous functions, Mathematical notes of the Academy of Sciences of the USSR, 28 (1980), 701-705.

On a generalization of $z$-ideals in modules over commutative rings

Year 2025, Volume: 37 Issue: 37, 297 - 312, 14.01.2025
https://doi.org/10.24330/ieja.1555106

Abstract

In this article, we introduce and study the concept of $z$-submodules as a generalization of $z$-ideals. Let $M$ be a module over a commutative ring with identity $R$. A proper submodule $N$ of $M$ is called a $z$-submodule if for any $x\in M$ and $y\in N$ such that every maximal submodule of $M$ containing $y$ also contains $x$, then $x\in N$ as well. We investigate the properties of $z$-submodules, particularly considering their stability with respect to various module constructions. Let $\mathcal{Z}({_R}M)$ denote the lattice of $z$-submodules of $M$ ordered by inclusion. We are concerned with
certain mappings between the lattices $\mathcal{Z}({_R}R)$ and $\mathcal{Z}({_R}M)$. The mappings in question are $\phi:\mathcal{Z}({_R}R) \rightarrow \mathcal{Z}({_R}M)$ defined by setting for each $z$-ideal $I$ of $R$, $\phi(I)$ to be the intersection of all $z$-submodules of $M$ containing $IM$ and $\psi:\mathcal{Z}({_R}M) \rightarrow \mathcal{Z}({_R}R)$ defined by $\psi(N)$ is the colon ideal $(N:M)$. It is shown that $\phi$ is a lattice homomorphism, and if $M$ is a finitely generated multiplication module, then $\psi$ is also a lattice homomorphism. In particular, $\mathcal{Z}({_R}M)$ is a homomorphic image of $\mathcal{R}({_R}M)$, the lattice of radical submodules of $M$. Finally, we show that if $Y$ is a finite subset of a compact Hausdorff $P$-space $X$, then every submodule of the $C(X)$- module $\mathbb{R}^Y$ is a $z$-submodule of $\mathbb{R}^Y$.

References

  • A. R. Aliabad, M. Badie and S. Nazari, An extension of $z$-ideals and ${z}^{0}$-ideals, Hacet. J. Math. Stat., 49(1) (2020), 254-272.
  • A. R. Aliabad and R. Mohamadian, On $z$-ideals and ${z}^{0}$-ideals of power series rings, J. Math. Ext., 7(2) (2013), 93-108.
  • A. R. Aliabad and R. Mohamadian, Prime $z$-ideal rings (pz-Rings), Bull. Iranian Math. Soc., 48(3) (2022), 1177-1192.
  • M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., 1969.
  • A. Benhissi and A. Maatallah, A question about higher order $z$-ideals in commutative rings, Quaest. Math., 43(8) (2020), 1155-1157.
  • T. Dube and O. Ighedo, On lattices of $z$-ideals of function rings, Math. Slovaca, 68(2) (2018), 271-284.
  • Z. A. El-Bast and F. P. Smith, Multiplication Modules, Comm. Algebra, 16(4) (1988), 755-779.
  • L. Gillman and M. Jerison, Rings of Continuous Functions, Univ. Ser. Higher Math., D. Van Nostrand Co., New York, 1960.
  • J. B. Harrehdashti and H. F. Moghimi, Complete homomorphisms between the lattices of radical submodules, Math. Rep., 20(70)(2) (2018), 187-200.
  • O. Ighedo and W. Wm. McGovern, On the lattice of $z$-ideals of a commutative ring, Topology Appl., 273 (2020), 106969 (16 pp).
  • C. W. Kohls, Ideals in rings of continuous functions, Fund. Math., 45 (1957), 28-50.
  • C. P. Lu, A module whose prime spectrum has the surjective natural map, Houston J. Math., 33(1) (2007), 125-143.
  • G. Mason, $z$-ideals and prime ideals, J. Algebra, 26 (1973), 280-297.
  • G. Mason, Prime $z$-ideals of $C(X)$ and related rings, Canad, Math. Bull., 23(4) (1980), 437-443.
  • H. F. Moghimi and J. B. Harehdashti, Mappings between lattices of radical submodules, Int. Electron. J. Algebra, 19 (2016), 35-48.
  • H. F. Moghimi and M. Noferesti, Mappings between the lattices of varieties of submodules, J. Algebra Relat. Topics, 10(1) (2022), 35-50.
  • H. F. Moghimi and M. Noferesti, On the distributivity of the lattice of radical submodules, J. Mahani Math. Res., 13(1) (2024), 347-355.
  • M. E. Moore and S. J. Smith, Prime and radical submodules of modules over commutative rings, Comm. Algebra, 30(10) (2002), 5037-5064.
  • J. R. Munkres, Topology: A First Course, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975.
  • M. Noferesti, H. F. Moghimi and M. H. Hosseini, Mappings between the lattices of saturated submodules with respect to a prime ideal, Hacet. J. Math. Stat., 50(1) (2021), 243-254.
  • J. Ohm and D. E. Rush, Content modules and algebras, Math. Scand., 31 (1972), 49-68.
  • V. S. Ramamurthi, On the injectivity and flatness of certain cyclic modules, Proc. Amer. Math. Soc., 48 (1975), 21-25.
  • P. F. Smith, Mapping between module lattices, Int. Electron. J. Algebra, 15 (2014), 173-195.
  • P. F. Smith, Complete homomorphisms between module lattices, Int. Electron. J. Algebra, 16 (2014), 16-31.
  • P. F. Smith, Anti-homomorphisms between module lattices, J. Commut. Algebra, 7(4) (2015), 567-592.
  • E. M. Vechtomov, Modules of all functions over the ring of continuous functions, Mathematical notes of the Academy of Sciences of the USSR, 28 (1980), 701-705.
There are 26 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Seyedeh Fatemeh Mohebian

Hosein Fazaeli Moghimi

Early Pub Date September 24, 2024
Publication Date January 14, 2025
Submission Date November 18, 2023
Acceptance Date July 17, 2024
Published in Issue Year 2025 Volume: 37 Issue: 37

Cite

APA Mohebian, S. F., & Fazaeli Moghimi, H. (2025). On a generalization of $z$-ideals in modules over commutative rings. International Electronic Journal of Algebra, 37(37), 297-312. https://doi.org/10.24330/ieja.1555106
AMA Mohebian SF, Fazaeli Moghimi H. On a generalization of $z$-ideals in modules over commutative rings. IEJA. January 2025;37(37):297-312. doi:10.24330/ieja.1555106
Chicago Mohebian, Seyedeh Fatemeh, and Hosein Fazaeli Moghimi. “On a Generalization of $z$-Ideals in Modules over Commutative Rings”. International Electronic Journal of Algebra 37, no. 37 (January 2025): 297-312. https://doi.org/10.24330/ieja.1555106.
EndNote Mohebian SF, Fazaeli Moghimi H (January 1, 2025) On a generalization of $z$-ideals in modules over commutative rings. International Electronic Journal of Algebra 37 37 297–312.
IEEE S. F. Mohebian and H. Fazaeli Moghimi, “On a generalization of $z$-ideals in modules over commutative rings”, IEJA, vol. 37, no. 37, pp. 297–312, 2025, doi: 10.24330/ieja.1555106.
ISNAD Mohebian, Seyedeh Fatemeh - Fazaeli Moghimi, Hosein. “On a Generalization of $z$-Ideals in Modules over Commutative Rings”. International Electronic Journal of Algebra 37/37 (January 2025), 297-312. https://doi.org/10.24330/ieja.1555106.
JAMA Mohebian SF, Fazaeli Moghimi H. On a generalization of $z$-ideals in modules over commutative rings. IEJA. 2025;37:297–312.
MLA Mohebian, Seyedeh Fatemeh and Hosein Fazaeli Moghimi. “On a Generalization of $z$-Ideals in Modules over Commutative Rings”. International Electronic Journal of Algebra, vol. 37, no. 37, 2025, pp. 297-12, doi:10.24330/ieja.1555106.
Vancouver Mohebian SF, Fazaeli Moghimi H. On a generalization of $z$-ideals in modules over commutative rings. IEJA. 2025;37(37):297-312.