The class of isotropic submanifolds in pseudo-Riemannian manifolds is a distinguished family
of submanifolds; they have been studied by several authors. In this article we establish Chen
inequalities for isotropic immersions. An example of an isotropic immersion for which the equality
case in the Chen first inequality holds is given.
[1] Cabrerizo, J.L., Fernández, M., Gómez, J.S.: Isotropic submanifolds of pseudo-Riemannian spaces. J. Geom. Physics. 69 (2), 1915-1924 (2012).
[2] Chen, B.-Y.: Some pinching and classification theorems for minimal submanifolds. Archiv Math. 60, 568-578 (1993).
[3] Chen, B.-Y.: Some new obstructions to minimal and Lagrangian isometric immersions. Japanese J. Math. 26, 105-127 (2000).
[4] Ciobanu, A., Mirea, M.: New inequalities on isotropic spacelike submanfolds in psuedo-Riemannian space forms. Romanian J. Math. Comp. Sci.
11 (2), 48-52 (2021).
[5] Hu, Z., Li, H.: Willmore Lagrangian spheres in the complex Euclidean space Cn. Annals of Global Analysis and Geometry. 25 (1), 73–98 (2004).
[6] O’Neill, B.: Isotropic and Kaehler immersions. Canad. J. Math. 17, 907-915 (1965).
[1] Cabrerizo, J.L., Fernández, M., Gómez, J.S.: Isotropic submanifolds of pseudo-Riemannian spaces. J. Geom. Physics. 69 (2), 1915-1924 (2012).
[2] Chen, B.-Y.: Some pinching and classification theorems for minimal submanifolds. Archiv Math. 60, 568-578 (1993).
[3] Chen, B.-Y.: Some new obstructions to minimal and Lagrangian isometric immersions. Japanese J. Math. 26, 105-127 (2000).
[4] Ciobanu, A., Mirea, M.: New inequalities on isotropic spacelike submanfolds in psuedo-Riemannian space forms. Romanian J. Math. Comp. Sci.
11 (2), 48-52 (2021).
[5] Hu, Z., Li, H.: Willmore Lagrangian spheres in the complex Euclidean space Cn. Annals of Global Analysis and Geometry. 25 (1), 73–98 (2004).
[6] O’Neill, B.: Isotropic and Kaehler immersions. Canad. J. Math. 17, 907-915 (1965).
Mirea, M. (2023). Chen Inequalities for Isotropic Submanifolds in Pseudo-Riemannian Space Forms. International Electronic Journal of Geometry, 16(1), 201-207. https://doi.org/10.36890/iejg.1259890
AMA
Mirea M. Chen Inequalities for Isotropic Submanifolds in Pseudo-Riemannian Space Forms. Int. Electron. J. Geom. April 2023;16(1):201-207. doi:10.36890/iejg.1259890
Chicago
Mirea, Marius. “Chen Inequalities for Isotropic Submanifolds in Pseudo-Riemannian Space Forms”. International Electronic Journal of Geometry 16, no. 1 (April 2023): 201-7. https://doi.org/10.36890/iejg.1259890.
EndNote
Mirea M (April 1, 2023) Chen Inequalities for Isotropic Submanifolds in Pseudo-Riemannian Space Forms. International Electronic Journal of Geometry 16 1 201–207.
IEEE
M. Mirea, “Chen Inequalities for Isotropic Submanifolds in Pseudo-Riemannian Space Forms”, Int. Electron. J. Geom., vol. 16, no. 1, pp. 201–207, 2023, doi: 10.36890/iejg.1259890.
ISNAD
Mirea, Marius. “Chen Inequalities for Isotropic Submanifolds in Pseudo-Riemannian Space Forms”. International Electronic Journal of Geometry 16/1 (April 2023), 201-207. https://doi.org/10.36890/iejg.1259890.
JAMA
Mirea M. Chen Inequalities for Isotropic Submanifolds in Pseudo-Riemannian Space Forms. Int. Electron. J. Geom. 2023;16:201–207.
MLA
Mirea, Marius. “Chen Inequalities for Isotropic Submanifolds in Pseudo-Riemannian Space Forms”. International Electronic Journal of Geometry, vol. 16, no. 1, 2023, pp. 201-7, doi:10.36890/iejg.1259890.
Vancouver
Mirea M. Chen Inequalities for Isotropic Submanifolds in Pseudo-Riemannian Space Forms. Int. Electron. J. Geom. 2023;16(1):201-7.