Research Article
BibTex RIS Cite

On Generalized Darboux Frame of a Pseudo Null Curve Lying on a Lightlike Surface in Minkowski 3-space

Year 2023, , 81 - 94, 30.04.2023
https://doi.org/10.36890/iejg.1269538

Abstract

In this paper we define generalized Darboux frame of a a pseudo null curve $\alpha$ lying on a
lightlike surface in Minkowski space $\mathbb{E}_{1}^{3}$. We prove that $\alpha$ has two such frames and obtain generalized Darboux frame's equations. We obtain
the relations between the curvature functions of $\alpha$ with respect to
the Darboux frame and generalized Darboux frames. We also find parameter equations of the Darboux vectors of the Frenet, Darboux and generalized Darboux frames and give the necessary and the sufficient conditions for such vectors to have the same directions. Finally, we present related examples.

Supporting Institution

This work is partially supported by the Serbian Ministry of Education, Science and Technological Development (Agreement No. 451-03-47/2023-01/ 200122).

Project Number

Agreement No. 451-03-47/2023-01/ 200122

References

  • [1] Carlsen, B., Clelland, J. N.: The geometry of lightlike surfaces in Minkowski space. Journal of Geometry and Physics. 74, 43-55 (2013). https://doi.org/10.1016/j.geomphys.2013.07.005
  • [2] Duggal, K. L., Jin, D. H.: Null Curves and Hypersurfaces of Semi-Riemannian Manifolds. Hackensack, NJ, USA: World Scientific Publishing, 2007.
  • [3] Inoguchi, J. I., Lee, S.: Lightlike surfaces in Minkowski 3-space. International Journal of Geometric Methods in Modern Physics. 6 (2), 267-283 (2009). https://doi.org/10.1142/S0219887809003552
  • [4] Djordjević, J., Nešović, E., Özturk, U.: On generalized Darboux frame of a spacelike curve lying on a lightlike surface in Minkowski space $E^3_1$. Turkish Journal of Mathematics. 47, 883-897 (2023). http://doi:10.55730/1300-0098.3399
  • [5] Liu, H., Curves in the lightlike cone. Beiträge zur Algebra und Geometrie. 45 (1), 291-303 (2004).
  • [6] Liu, S., Wang, Z.: Generalized focal surfaces of spacelike curves lying in lightlike surfaces. Mathematical Methods in the Applied Sciences. 44, 7501–7525 (2021). https://doi.org/10.1002/mma.6296
  • [7] Navarro. M., Palmas, O., Solis, D. A.: On the geometry of null hypersurfaces in Minkowski space. Journal of Geometry and Physics. 75, 199-212 (2014). https://doi.org/10.1016/j.geomphys.2013.10.005
  • [8] Nešović, E., Özturk, U., Koç Öztürk, E. B.: Some characterizations of pseudo null isophotic curves in Minkowski 3-space. Journal of Geometry. 122 (29), 1-13 (2021). https://doi.org/10.1007/s00022-021-00593-4
  • [9] O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press. London (1983).
  • [10] Öztürk, U., Nešović, E., Koç Öztürk, E. B.: On k-type spacelike slant helices lying on lightlike surfaces. Filomat. 33 (9), 2781-2796 (2019). http://dx.doi.org/10.2298/FIL1909781O
  • [11] Senovilla, J. M. M.: Singularity theorems and their consequences. General Relativity and Gravitation. 30 (5), 701-848 (1998). https://doi.org/10.1023/A:1018801101244
  • [12] Umehara, M., Yamada, K.: Hypersurfaces with light-like points in a Lorentzian manifold. The Journal of Geometric Analysis. textbf29, 3405-3437 (2019). https://doi.org/10.1007/s12220-018-00118-7
  • [13] Walrave, J.: Curves and surfaces in Minkowski space. Ph.D. thesis. Leuven University (1995).
  • [14] Wang, Y., Pei, D., Cui, X.: Pseudo-spherical normal Darboux images of curves on a lightlike surface. Mathematical Methods in the Applied Sciences. 40 (18), 7151-7161 (2017). https://doi.org/10.1002/mma.4519
  • [15] Yakıcı, Topbas E. S., Gök, I., Ekmekci, N., Yayli, Y.: Darboux frame of a curve lying on a lightlike surface. Mathematical Sciences and Applications E-Notes. 4 (2), 121-130 (2016). https://doi.org/10.36753/mathenot.421465
  • [16] Zhou, K., Wang, Z.: Pseudo-spherical Darboux images and lightcone images of principal-directional curves of nonlightlike curves in Minkowski 3-space. Mathematical Methods in the Applied Sciences. 43 (1), 35-77 (2020). https://doi.org/10.1002/mma.5374
Year 2023, , 81 - 94, 30.04.2023
https://doi.org/10.36890/iejg.1269538

Abstract

Project Number

Agreement No. 451-03-47/2023-01/ 200122

References

  • [1] Carlsen, B., Clelland, J. N.: The geometry of lightlike surfaces in Minkowski space. Journal of Geometry and Physics. 74, 43-55 (2013). https://doi.org/10.1016/j.geomphys.2013.07.005
  • [2] Duggal, K. L., Jin, D. H.: Null Curves and Hypersurfaces of Semi-Riemannian Manifolds. Hackensack, NJ, USA: World Scientific Publishing, 2007.
  • [3] Inoguchi, J. I., Lee, S.: Lightlike surfaces in Minkowski 3-space. International Journal of Geometric Methods in Modern Physics. 6 (2), 267-283 (2009). https://doi.org/10.1142/S0219887809003552
  • [4] Djordjević, J., Nešović, E., Özturk, U.: On generalized Darboux frame of a spacelike curve lying on a lightlike surface in Minkowski space $E^3_1$. Turkish Journal of Mathematics. 47, 883-897 (2023). http://doi:10.55730/1300-0098.3399
  • [5] Liu, H., Curves in the lightlike cone. Beiträge zur Algebra und Geometrie. 45 (1), 291-303 (2004).
  • [6] Liu, S., Wang, Z.: Generalized focal surfaces of spacelike curves lying in lightlike surfaces. Mathematical Methods in the Applied Sciences. 44, 7501–7525 (2021). https://doi.org/10.1002/mma.6296
  • [7] Navarro. M., Palmas, O., Solis, D. A.: On the geometry of null hypersurfaces in Minkowski space. Journal of Geometry and Physics. 75, 199-212 (2014). https://doi.org/10.1016/j.geomphys.2013.10.005
  • [8] Nešović, E., Özturk, U., Koç Öztürk, E. B.: Some characterizations of pseudo null isophotic curves in Minkowski 3-space. Journal of Geometry. 122 (29), 1-13 (2021). https://doi.org/10.1007/s00022-021-00593-4
  • [9] O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press. London (1983).
  • [10] Öztürk, U., Nešović, E., Koç Öztürk, E. B.: On k-type spacelike slant helices lying on lightlike surfaces. Filomat. 33 (9), 2781-2796 (2019). http://dx.doi.org/10.2298/FIL1909781O
  • [11] Senovilla, J. M. M.: Singularity theorems and their consequences. General Relativity and Gravitation. 30 (5), 701-848 (1998). https://doi.org/10.1023/A:1018801101244
  • [12] Umehara, M., Yamada, K.: Hypersurfaces with light-like points in a Lorentzian manifold. The Journal of Geometric Analysis. textbf29, 3405-3437 (2019). https://doi.org/10.1007/s12220-018-00118-7
  • [13] Walrave, J.: Curves and surfaces in Minkowski space. Ph.D. thesis. Leuven University (1995).
  • [14] Wang, Y., Pei, D., Cui, X.: Pseudo-spherical normal Darboux images of curves on a lightlike surface. Mathematical Methods in the Applied Sciences. 40 (18), 7151-7161 (2017). https://doi.org/10.1002/mma.4519
  • [15] Yakıcı, Topbas E. S., Gök, I., Ekmekci, N., Yayli, Y.: Darboux frame of a curve lying on a lightlike surface. Mathematical Sciences and Applications E-Notes. 4 (2), 121-130 (2016). https://doi.org/10.36753/mathenot.421465
  • [16] Zhou, K., Wang, Z.: Pseudo-spherical Darboux images and lightcone images of principal-directional curves of nonlightlike curves in Minkowski 3-space. Mathematical Methods in the Applied Sciences. 43 (1), 35-77 (2020). https://doi.org/10.1002/mma.5374
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Jelena Djordjević This is me 0000-0003-3052-6778

Emilija Nešović 0000-0002-3124-6308

Project Number Agreement No. 451-03-47/2023-01/ 200122
Publication Date April 30, 2023
Acceptance Date April 1, 2023
Published in Issue Year 2023

Cite

APA Djordjević, J., & Nešović, E. (2023). On Generalized Darboux Frame of a Pseudo Null Curve Lying on a Lightlike Surface in Minkowski 3-space. International Electronic Journal of Geometry, 16(1), 81-94. https://doi.org/10.36890/iejg.1269538
AMA Djordjević J, Nešović E. On Generalized Darboux Frame of a Pseudo Null Curve Lying on a Lightlike Surface in Minkowski 3-space. Int. Electron. J. Geom. April 2023;16(1):81-94. doi:10.36890/iejg.1269538
Chicago Djordjević, Jelena, and Emilija Nešović. “On Generalized Darboux Frame of a Pseudo Null Curve Lying on a Lightlike Surface in Minkowski 3-Space”. International Electronic Journal of Geometry 16, no. 1 (April 2023): 81-94. https://doi.org/10.36890/iejg.1269538.
EndNote Djordjević J, Nešović E (April 1, 2023) On Generalized Darboux Frame of a Pseudo Null Curve Lying on a Lightlike Surface in Minkowski 3-space. International Electronic Journal of Geometry 16 1 81–94.
IEEE J. Djordjević and E. Nešović, “On Generalized Darboux Frame of a Pseudo Null Curve Lying on a Lightlike Surface in Minkowski 3-space”, Int. Electron. J. Geom., vol. 16, no. 1, pp. 81–94, 2023, doi: 10.36890/iejg.1269538.
ISNAD Djordjević, Jelena - Nešović, Emilija. “On Generalized Darboux Frame of a Pseudo Null Curve Lying on a Lightlike Surface in Minkowski 3-Space”. International Electronic Journal of Geometry 16/1 (April 2023), 81-94. https://doi.org/10.36890/iejg.1269538.
JAMA Djordjević J, Nešović E. On Generalized Darboux Frame of a Pseudo Null Curve Lying on a Lightlike Surface in Minkowski 3-space. Int. Electron. J. Geom. 2023;16:81–94.
MLA Djordjević, Jelena and Emilija Nešović. “On Generalized Darboux Frame of a Pseudo Null Curve Lying on a Lightlike Surface in Minkowski 3-Space”. International Electronic Journal of Geometry, vol. 16, no. 1, 2023, pp. 81-94, doi:10.36890/iejg.1269538.
Vancouver Djordjević J, Nešović E. On Generalized Darboux Frame of a Pseudo Null Curve Lying on a Lightlike Surface in Minkowski 3-space. Int. Electron. J. Geom. 2023;16(1):81-94.