Research Article
BibTex RIS Cite

On Isometric Immersions of Null Manifolds into Semi-Riemannian Space Forms of Arbitrary Index

Year 2023, , 304 - 333, 30.04.2023
https://doi.org/10.36890/iejg.1274307

Abstract

A null manifold is a differentiable manifold M endowed with a degenerate metric tensor g. In this work we provide sufficient conditions for a null manifold to be isometrically immersed as a hypersurface into a simple connected semi-Riemannian manifold of constant sectional curvature c and index q

Supporting Institution

Conacyt, UNAM, UADY

Project Number

Becas Nacionales 807031, SNI 25997, SNI 16167, SNI SNI 38368; DGAPA-PAPIIT IN101322; FMAT-2023-0002, FMAT-PTA-2022

Thanks

Conacyt, UNAM, UADY

References

  • [1] Abe, K., Magid, M.: Relative nullity foliations and indefinite isometric immersions. Pacific J. Math. 142 (1), 1-20 (1986).
  • [2] Atindogbe, C., Harouna, M. M., Tossa, J.: Lightlike hypersurfaces in Lorentzian manifolds with constant screen principal curvatures. Afr. Diaspora J. Math. 16 (2), 31-45 (2014).
  • [3] Bishop, R., Crittenden, R.: Geometry of manifolds. American Mathematical Society, Providence (2001).
  • [4] Bonnet, O.: Mémoire sur la théorie des surfaces applicables. J. Ec. Polyt. 92, 72-92 (1867).
  • [5] Atindogbe, C. Ezin, J. P., Tossa, J.: Reduction of the codimension for lightlike isotropic submanifolds. J. Geom. Phys. 42 (1-2), 1-11 (2002).
  • [6] Canevari, S., Tojeiro, Ruy.: Isometric immersions of space forms into Sp × R. Math. Nachr. 293 (7), 1259-1277 (2020).
  • [7] Chen, Q. and Xiang, C. R.: Isometric immersions into warped product spaces. Acta Math. Sin. (Engl. Ser.) 26 (12), 2269-2282 (2010).
  • [8] Dajczer, M.: Submanifolds and isometric immersions. Mathematics Lecture Series. Publish or Perish, Houston (1990).
  • [9] Dajczer, M., Onti, C. R., Vlachos, T.: Isometric immersions with flat normal bundle between space forms. Arch. Math. 116 (5), 577-583 (2021).
  • [10] Dajczer, M., Tojeiro, R.: Isometric immersions in codimension two of warped products into space forms. Illinois J. Math. 48, (3) 711-746 (2004).
  • [11] Dajczer, M., Tojeiro, R.: Submanifold theory: Beyond an introduction. Universitext. Springer, New York (2019).
  • [12] Daniel, B.: Isometric immersions into Sn × R and Hn × R and applications to minimal surfaces. Trans. Am. Math. Soc. 361 (12), 6255-6282 (2009).
  • [13] Duggal, K. L., Bejancu, A.: Lightlike submanifolds of codimension two. Math. J. Toyama Univ. 15, 59-82 (1992).
  • [14] Duggal, K. L., Bejancu, A.: Lightlike submanifolds of semi-Riemannian manifolds and applications. Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1996).
  • [15] Duggal, K. L., Sahin, B.: Differential geometry of lightlike submanifolds. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2010).
  • [16] Eisenhart, L. P.: Riemannian geometry. Princeton University Press (1964).
  • [17] Graves, L. K.: Codimension one isometric immersions between Lorentz spaces. Trans. Am. Math. Soc. 252, 367-392 (1979).
  • [18] Greene, R. E.: Isometric embeddings of Riemannian and pseudo-Riemannian manifolds. American Mathematical Society, Providence (1970).
  • [19] Gromov, M.: Isometric immersions of Riemannian manifolds. Elie Cartan et les Mathématiques d’Aujourd’hui, Astérisque. 129-133 (1985).
  • [20] Jacobowitz, H.: The Gauss-Codazzi equations. Tensor 39, 15-22 (1982).
  • [21] Kitamura, S.: The imbedding of spherically symmetric space times in a Riemannian 5-space of constant curvature. Tensor (N.S.) 16, 74-83 (1965).
  • [22] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Volume 1. Wiley Interscience (1996).
  • [23] Lawn, M. A., Ortega, M.: A fundamental theorem for hypersurfaces in semi-Riemannian warped products. J. Geom. Phys. 90, 55-70 (2015).
  • [24] Li, X. X., Zhang, T. Q.: Isometric immersions of higher codimension into the product Sk × Hn+p−k. Acta Math. Sin. (Engl. Ser.) 30 (12), 2146-2160 (2014).
  • [25] Lira, J. H., Tojeiro, R. Vitório, F.: A Bonnet theorem for isometric immersions into products of space forms. Arch. Math. 95 (5), 469-479 (2010).
  • [26] Magid, M. A.: Isometric immersions of Lorentz space with parallel second fundamental forms. Tsukaba J. Math. 8 (1), 31-54 (1984).
  • [27] O’Neill, B.: Semi-Riemannian geometry, with applications to relativity. Academic Press, London (1983).
  • [28] Poznjak, E. G., Sokolov, D. D.: Isometric immersions of Riemannian spaces in Euclidean spaces. J. Soviet Math. 14, 1407-1428 (1980).
  • [29] Spivak, M.: A comprehensive introduction to differential geometry. Vol. IV. Publish or Perish, Wilmington (1979).
  • [30] Tenenblat, K.: On isometric immersions of Riemannian manifolds. Bull. Braz. Math. Soc. 2 (2), 23-36 (1971).
  • [31] Tu, L.: Differential geometry: connections, curvature and characteristic classes. Springer-Verlag, New York (2017).
Year 2023, , 304 - 333, 30.04.2023
https://doi.org/10.36890/iejg.1274307

Abstract

Project Number

Becas Nacionales 807031, SNI 25997, SNI 16167, SNI SNI 38368; DGAPA-PAPIIT IN101322; FMAT-2023-0002, FMAT-PTA-2022

References

  • [1] Abe, K., Magid, M.: Relative nullity foliations and indefinite isometric immersions. Pacific J. Math. 142 (1), 1-20 (1986).
  • [2] Atindogbe, C., Harouna, M. M., Tossa, J.: Lightlike hypersurfaces in Lorentzian manifolds with constant screen principal curvatures. Afr. Diaspora J. Math. 16 (2), 31-45 (2014).
  • [3] Bishop, R., Crittenden, R.: Geometry of manifolds. American Mathematical Society, Providence (2001).
  • [4] Bonnet, O.: Mémoire sur la théorie des surfaces applicables. J. Ec. Polyt. 92, 72-92 (1867).
  • [5] Atindogbe, C. Ezin, J. P., Tossa, J.: Reduction of the codimension for lightlike isotropic submanifolds. J. Geom. Phys. 42 (1-2), 1-11 (2002).
  • [6] Canevari, S., Tojeiro, Ruy.: Isometric immersions of space forms into Sp × R. Math. Nachr. 293 (7), 1259-1277 (2020).
  • [7] Chen, Q. and Xiang, C. R.: Isometric immersions into warped product spaces. Acta Math. Sin. (Engl. Ser.) 26 (12), 2269-2282 (2010).
  • [8] Dajczer, M.: Submanifolds and isometric immersions. Mathematics Lecture Series. Publish or Perish, Houston (1990).
  • [9] Dajczer, M., Onti, C. R., Vlachos, T.: Isometric immersions with flat normal bundle between space forms. Arch. Math. 116 (5), 577-583 (2021).
  • [10] Dajczer, M., Tojeiro, R.: Isometric immersions in codimension two of warped products into space forms. Illinois J. Math. 48, (3) 711-746 (2004).
  • [11] Dajczer, M., Tojeiro, R.: Submanifold theory: Beyond an introduction. Universitext. Springer, New York (2019).
  • [12] Daniel, B.: Isometric immersions into Sn × R and Hn × R and applications to minimal surfaces. Trans. Am. Math. Soc. 361 (12), 6255-6282 (2009).
  • [13] Duggal, K. L., Bejancu, A.: Lightlike submanifolds of codimension two. Math. J. Toyama Univ. 15, 59-82 (1992).
  • [14] Duggal, K. L., Bejancu, A.: Lightlike submanifolds of semi-Riemannian manifolds and applications. Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1996).
  • [15] Duggal, K. L., Sahin, B.: Differential geometry of lightlike submanifolds. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2010).
  • [16] Eisenhart, L. P.: Riemannian geometry. Princeton University Press (1964).
  • [17] Graves, L. K.: Codimension one isometric immersions between Lorentz spaces. Trans. Am. Math. Soc. 252, 367-392 (1979).
  • [18] Greene, R. E.: Isometric embeddings of Riemannian and pseudo-Riemannian manifolds. American Mathematical Society, Providence (1970).
  • [19] Gromov, M.: Isometric immersions of Riemannian manifolds. Elie Cartan et les Mathématiques d’Aujourd’hui, Astérisque. 129-133 (1985).
  • [20] Jacobowitz, H.: The Gauss-Codazzi equations. Tensor 39, 15-22 (1982).
  • [21] Kitamura, S.: The imbedding of spherically symmetric space times in a Riemannian 5-space of constant curvature. Tensor (N.S.) 16, 74-83 (1965).
  • [22] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Volume 1. Wiley Interscience (1996).
  • [23] Lawn, M. A., Ortega, M.: A fundamental theorem for hypersurfaces in semi-Riemannian warped products. J. Geom. Phys. 90, 55-70 (2015).
  • [24] Li, X. X., Zhang, T. Q.: Isometric immersions of higher codimension into the product Sk × Hn+p−k. Acta Math. Sin. (Engl. Ser.) 30 (12), 2146-2160 (2014).
  • [25] Lira, J. H., Tojeiro, R. Vitório, F.: A Bonnet theorem for isometric immersions into products of space forms. Arch. Math. 95 (5), 469-479 (2010).
  • [26] Magid, M. A.: Isometric immersions of Lorentz space with parallel second fundamental forms. Tsukaba J. Math. 8 (1), 31-54 (1984).
  • [27] O’Neill, B.: Semi-Riemannian geometry, with applications to relativity. Academic Press, London (1983).
  • [28] Poznjak, E. G., Sokolov, D. D.: Isometric immersions of Riemannian spaces in Euclidean spaces. J. Soviet Math. 14, 1407-1428 (1980).
  • [29] Spivak, M.: A comprehensive introduction to differential geometry. Vol. IV. Publish or Perish, Wilmington (1979).
  • [30] Tenenblat, K.: On isometric immersions of Riemannian manifolds. Bull. Braz. Math. Soc. 2 (2), 23-36 (1971).
  • [31] Tu, L.: Differential geometry: connections, curvature and characteristic classes. Springer-Verlag, New York (2017).
There are 31 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Carlos Avila 0009-0007-3730-3995

Matias Navarro 0000-0002-2340-7730

Oscar Palmas 0000-0001-5316-8905

Didier Solis 0000-0001-5099-3088

Project Number Becas Nacionales 807031, SNI 25997, SNI 16167, SNI SNI 38368; DGAPA-PAPIIT IN101322; FMAT-2023-0002, FMAT-PTA-2022
Publication Date April 30, 2023
Acceptance Date April 25, 2023
Published in Issue Year 2023

Cite

APA Avila, C., Navarro, M., Palmas, O., Solis, D. (2023). On Isometric Immersions of Null Manifolds into Semi-Riemannian Space Forms of Arbitrary Index. International Electronic Journal of Geometry, 16(1), 304-333. https://doi.org/10.36890/iejg.1274307
AMA Avila C, Navarro M, Palmas O, Solis D. On Isometric Immersions of Null Manifolds into Semi-Riemannian Space Forms of Arbitrary Index. Int. Electron. J. Geom. April 2023;16(1):304-333. doi:10.36890/iejg.1274307
Chicago Avila, Carlos, Matias Navarro, Oscar Palmas, and Didier Solis. “On Isometric Immersions of Null Manifolds into Semi-Riemannian Space Forms of Arbitrary Index”. International Electronic Journal of Geometry 16, no. 1 (April 2023): 304-33. https://doi.org/10.36890/iejg.1274307.
EndNote Avila C, Navarro M, Palmas O, Solis D (April 1, 2023) On Isometric Immersions of Null Manifolds into Semi-Riemannian Space Forms of Arbitrary Index. International Electronic Journal of Geometry 16 1 304–333.
IEEE C. Avila, M. Navarro, O. Palmas, and D. Solis, “On Isometric Immersions of Null Manifolds into Semi-Riemannian Space Forms of Arbitrary Index”, Int. Electron. J. Geom., vol. 16, no. 1, pp. 304–333, 2023, doi: 10.36890/iejg.1274307.
ISNAD Avila, Carlos et al. “On Isometric Immersions of Null Manifolds into Semi-Riemannian Space Forms of Arbitrary Index”. International Electronic Journal of Geometry 16/1 (April 2023), 304-333. https://doi.org/10.36890/iejg.1274307.
JAMA Avila C, Navarro M, Palmas O, Solis D. On Isometric Immersions of Null Manifolds into Semi-Riemannian Space Forms of Arbitrary Index. Int. Electron. J. Geom. 2023;16:304–333.
MLA Avila, Carlos et al. “On Isometric Immersions of Null Manifolds into Semi-Riemannian Space Forms of Arbitrary Index”. International Electronic Journal of Geometry, vol. 16, no. 1, 2023, pp. 304-33, doi:10.36890/iejg.1274307.
Vancouver Avila C, Navarro M, Palmas O, Solis D. On Isometric Immersions of Null Manifolds into Semi-Riemannian Space Forms of Arbitrary Index. Int. Electron. J. Geom. 2023;16(1):304-33.