Research Article
BibTex RIS Cite
Year 2023, , 680 - 688, 29.10.2023
https://doi.org/10.36890/iejg.1343784

Abstract

References

  • [1] Akça, Z., Bayar, A., Ekmekçi, S., Van Maldeghem, H.: Fuzzy Projective Spreads of Fuzzy Projective Spaces, Fuzzy Sets and Systems, vol. 157, no. 24, pp. 3237-3247 (2006).
  • [2] Akça, Z., Bayar, A., Ekmekçi, S.: On the classification of Fuzzy projective lines of Fuzzy 3-dimensional projective spaces, Communications Mathematics and Statistics, Vol. 55(2), 17-23 (2007).
  • [3] Akça, Z., Bayar, A., Ekmekçi, S., Kaya, R., Thas, J. A., Van Maldeghem H.: Generalized lax Veronesean embeddings of projective spaces, Ars Combin. 103, 65-80 (2012).
  • [4] Akça, Z.: On fuzzify the notion of Grassmannian in fuzzy n dimensional projective space, International Journal of the Physical Sciences, vol. 6, no. 25, pp. 5877-5882 (2011).
  • [5] Bayar, A., Akça, Z., Ekmekçi, S.: A Note on Fibered Projective Plane Geometry, Information Science 178, 1257-1262 (2008).
  • [6] Ekmekçi, S., Bayar, A., Akça, Z.: On the classification of Fuzzy projective planes of Fuzzy 3-dimensional projective spaces, Chaos, Solitons and Fractals 40, 2146-2151 (2009).
  • [7] Hirschfeld J.W.P.: Projective Geometries over Finite Fields, Oxford Mathematical Monographs, 576 (1998).
  • [8] Klein, F.: Uber die Transformation der allgemeinen Gleichung des zweiten Grades zwischen Linien-Koordinaten auf eine kanonische, Form Math., p. 539-578 (1868).
  • [9] Kuijken L., Van Maldeghem H., Kerre E.E.: Fuzzy projective geometries from fuzzy vector spaces, in: A. Billot et al. (Eds.), Information Processing and Management of Uncertainty in Knowledge-based Systems, Editions Medicales et Scientifiques, Paris, La Sorbonne, 1331- 1338 (1998).
  • [10] Lubczonok P.: Fuzzy Vector Spaces, Fuzzy Sets and Systems 38, 329-343 (1990).
  • [11] Plucker, J.: On a New Geometry of Space, Philosophical Transactions of the Royal Society of London, Vol. 155, pp. 725-791 (1865).
  • [12] Zadeh, L.: Fuzzy sets, Information control 8, 338-353 (1965).

Fuzzy Counterpart of Klein Quadric

Year 2023, , 680 - 688, 29.10.2023
https://doi.org/10.36890/iejg.1343784

Abstract

Many techniques have been proposed to project the high-dimensional space into a low-dimensional space, one of the most famous methods being principal component analysis. The Klein quadric is a geometric shape defined by a second-degree homogeneous equation. The lines of projective three-space are, via the Klein mapping, in one-to-one correspondence with points of a hyperbolic quadric of the projective 5-space. This paper presents a research study on he images under the Klein mapping of the projectice 3-space order of 4 and the fuzzification of the Klein quadric in 5-dimensional projective space.

References

  • [1] Akça, Z., Bayar, A., Ekmekçi, S., Van Maldeghem, H.: Fuzzy Projective Spreads of Fuzzy Projective Spaces, Fuzzy Sets and Systems, vol. 157, no. 24, pp. 3237-3247 (2006).
  • [2] Akça, Z., Bayar, A., Ekmekçi, S.: On the classification of Fuzzy projective lines of Fuzzy 3-dimensional projective spaces, Communications Mathematics and Statistics, Vol. 55(2), 17-23 (2007).
  • [3] Akça, Z., Bayar, A., Ekmekçi, S., Kaya, R., Thas, J. A., Van Maldeghem H.: Generalized lax Veronesean embeddings of projective spaces, Ars Combin. 103, 65-80 (2012).
  • [4] Akça, Z.: On fuzzify the notion of Grassmannian in fuzzy n dimensional projective space, International Journal of the Physical Sciences, vol. 6, no. 25, pp. 5877-5882 (2011).
  • [5] Bayar, A., Akça, Z., Ekmekçi, S.: A Note on Fibered Projective Plane Geometry, Information Science 178, 1257-1262 (2008).
  • [6] Ekmekçi, S., Bayar, A., Akça, Z.: On the classification of Fuzzy projective planes of Fuzzy 3-dimensional projective spaces, Chaos, Solitons and Fractals 40, 2146-2151 (2009).
  • [7] Hirschfeld J.W.P.: Projective Geometries over Finite Fields, Oxford Mathematical Monographs, 576 (1998).
  • [8] Klein, F.: Uber die Transformation der allgemeinen Gleichung des zweiten Grades zwischen Linien-Koordinaten auf eine kanonische, Form Math., p. 539-578 (1868).
  • [9] Kuijken L., Van Maldeghem H., Kerre E.E.: Fuzzy projective geometries from fuzzy vector spaces, in: A. Billot et al. (Eds.), Information Processing and Management of Uncertainty in Knowledge-based Systems, Editions Medicales et Scientifiques, Paris, La Sorbonne, 1331- 1338 (1998).
  • [10] Lubczonok P.: Fuzzy Vector Spaces, Fuzzy Sets and Systems 38, 329-343 (1990).
  • [11] Plucker, J.: On a New Geometry of Space, Philosophical Transactions of the Royal Society of London, Vol. 155, pp. 725-791 (1865).
  • [12] Zadeh, L.: Fuzzy sets, Information control 8, 338-353 (1965).
There are 12 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Article
Authors

Ziya Akça 0000-0001-6379-0546

Abdilkadir Altıntaş 0000-0002-7012-352X

Early Pub Date October 19, 2023
Publication Date October 29, 2023
Acceptance Date September 28, 2023
Published in Issue Year 2023

Cite

APA Akça, Z., & Altıntaş, A. (2023). Fuzzy Counterpart of Klein Quadric. International Electronic Journal of Geometry, 16(2), 680-688. https://doi.org/10.36890/iejg.1343784
AMA Akça Z, Altıntaş A. Fuzzy Counterpart of Klein Quadric. Int. Electron. J. Geom. October 2023;16(2):680-688. doi:10.36890/iejg.1343784
Chicago Akça, Ziya, and Abdilkadir Altıntaş. “Fuzzy Counterpart of Klein Quadric”. International Electronic Journal of Geometry 16, no. 2 (October 2023): 680-88. https://doi.org/10.36890/iejg.1343784.
EndNote Akça Z, Altıntaş A (October 1, 2023) Fuzzy Counterpart of Klein Quadric. International Electronic Journal of Geometry 16 2 680–688.
IEEE Z. Akça and A. Altıntaş, “Fuzzy Counterpart of Klein Quadric”, Int. Electron. J. Geom., vol. 16, no. 2, pp. 680–688, 2023, doi: 10.36890/iejg.1343784.
ISNAD Akça, Ziya - Altıntaş, Abdilkadir. “Fuzzy Counterpart of Klein Quadric”. International Electronic Journal of Geometry 16/2 (October 2023), 680-688. https://doi.org/10.36890/iejg.1343784.
JAMA Akça Z, Altıntaş A. Fuzzy Counterpart of Klein Quadric. Int. Electron. J. Geom. 2023;16:680–688.
MLA Akça, Ziya and Abdilkadir Altıntaş. “Fuzzy Counterpart of Klein Quadric”. International Electronic Journal of Geometry, vol. 16, no. 2, 2023, pp. 680-8, doi:10.36890/iejg.1343784.
Vancouver Akça Z, Altıntaş A. Fuzzy Counterpart of Klein Quadric. Int. Electron. J. Geom. 2023;16(2):680-8.