Research Article
BibTex RIS Cite
Year 2023, , 665 - 671, 29.10.2023
https://doi.org/10.36890/iejg.1364214

Abstract

References

  • [1] Bredon, G.E.: Introduction to Compact Transformation Groups. Academic Press, New York and London, (1972).
  • [2] Gürer, S., Iglesias-Zemmour, P.: Orbifolds as stratified diffeologies. Differential Geometry and its Applications. 86, (2023).
  • [3] Iglesias-Zemmour, P.: Fibrations difféologiques et homotopie, State doctorate dissertation. Université de Provence, Marseille. (1985).
  • [4] Iglesias, P.: Les SO(3)-variétés symplectiques et leur classification en dimension 4. Bull. Soc. Math. France. 119 (4), 371-396 (1991).
  • [5] Iglesias-Zemmour, P.: Dimesion in Diffeology. Indagationes Mathematicae. 18 (4), 555-560. (2007).
  • [6] Iglesias-Zemmour, P..: ODiffeology. Mathematical Surveys and Monographs. The American Mathematical Society. 185, (2013).
  • [7] Iglesias-Zemmour, P.: Klein Stratification of Diffeological Spaces. Blog post. (2022). http://math.huji.ac.il/~piz/documents/ DBlog-Rmk-KSODS.pdf
  • [8] Karshon, Y.,Kuriko, S.: Classification of locally standard torus manifolds up to equivariant diffeomorphism. In Preperation.
  • [9] Palais, R.: On the Existence of Slices for Actions of Non-Compact Lie Groups. Annals of Mathematics Second Series. 73 (2), 295-323 (1961).
  • [10] Pflaum, M.J.: Analytic and Geometric Study of Stratified Spaces. Lecture Notes in Mathematics. 1768 (1), 1-8 (2001).

Klein Stratification of Orbit Spaces: Examples

Year 2023, , 665 - 671, 29.10.2023
https://doi.org/10.36890/iejg.1364214

Abstract

We consider the stratification of orbit spaces as defined by the local diffeomorphism action, known as the Klein stratification. We demonstrate that the Klein strata on orbit spaces with isolated point singularities are precisely the union of points where the space has the same dimension.

References

  • [1] Bredon, G.E.: Introduction to Compact Transformation Groups. Academic Press, New York and London, (1972).
  • [2] Gürer, S., Iglesias-Zemmour, P.: Orbifolds as stratified diffeologies. Differential Geometry and its Applications. 86, (2023).
  • [3] Iglesias-Zemmour, P.: Fibrations difféologiques et homotopie, State doctorate dissertation. Université de Provence, Marseille. (1985).
  • [4] Iglesias, P.: Les SO(3)-variétés symplectiques et leur classification en dimension 4. Bull. Soc. Math. France. 119 (4), 371-396 (1991).
  • [5] Iglesias-Zemmour, P.: Dimesion in Diffeology. Indagationes Mathematicae. 18 (4), 555-560. (2007).
  • [6] Iglesias-Zemmour, P..: ODiffeology. Mathematical Surveys and Monographs. The American Mathematical Society. 185, (2013).
  • [7] Iglesias-Zemmour, P.: Klein Stratification of Diffeological Spaces. Blog post. (2022). http://math.huji.ac.il/~piz/documents/ DBlog-Rmk-KSODS.pdf
  • [8] Karshon, Y.,Kuriko, S.: Classification of locally standard torus manifolds up to equivariant diffeomorphism. In Preperation.
  • [9] Palais, R.: On the Existence of Slices for Actions of Non-Compact Lie Groups. Annals of Mathematics Second Series. 73 (2), 295-323 (1961).
  • [10] Pflaum, M.J.: Analytic and Geometric Study of Stratified Spaces. Lecture Notes in Mathematics. 1768 (1), 1-8 (2001).
There are 10 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Serap Gürer 0000-0002-3300-4265

Early Pub Date October 19, 2023
Publication Date October 29, 2023
Acceptance Date October 10, 2023
Published in Issue Year 2023

Cite

APA Gürer, S. (2023). Klein Stratification of Orbit Spaces: Examples. International Electronic Journal of Geometry, 16(2), 665-671. https://doi.org/10.36890/iejg.1364214
AMA Gürer S. Klein Stratification of Orbit Spaces: Examples. Int. Electron. J. Geom. October 2023;16(2):665-671. doi:10.36890/iejg.1364214
Chicago Gürer, Serap. “Klein Stratification of Orbit Spaces: Examples”. International Electronic Journal of Geometry 16, no. 2 (October 2023): 665-71. https://doi.org/10.36890/iejg.1364214.
EndNote Gürer S (October 1, 2023) Klein Stratification of Orbit Spaces: Examples. International Electronic Journal of Geometry 16 2 665–671.
IEEE S. Gürer, “Klein Stratification of Orbit Spaces: Examples”, Int. Electron. J. Geom., vol. 16, no. 2, pp. 665–671, 2023, doi: 10.36890/iejg.1364214.
ISNAD Gürer, Serap. “Klein Stratification of Orbit Spaces: Examples”. International Electronic Journal of Geometry 16/2 (October 2023), 665-671. https://doi.org/10.36890/iejg.1364214.
JAMA Gürer S. Klein Stratification of Orbit Spaces: Examples. Int. Electron. J. Geom. 2023;16:665–671.
MLA Gürer, Serap. “Klein Stratification of Orbit Spaces: Examples”. International Electronic Journal of Geometry, vol. 16, no. 2, 2023, pp. 665-71, doi:10.36890/iejg.1364214.
Vancouver Gürer S. Klein Stratification of Orbit Spaces: Examples. Int. Electron. J. Geom. 2023;16(2):665-71.