Research Article
BibTex RIS Cite

Homogeneous Geodesics of $4$-dimensional Solvable Lie Groups

Year 2024, , 106 - 136, 23.04.2024
https://doi.org/10.36890/iejg.1429782

Abstract

We study homogeneous geodesics in $4$-dimensional solvable Lie groups $\mathrm{Sol}_0^4$,
$\mathrm{Sol}_1^4$, $\mathrm{Sol}_{m,n}$ and $\mathrm{Nil}_4$.

References

  • [1] Alekseevskii, D.V.: Homogeneous Riemannian spaces of negative curvature. Mat. Sb. 96(138), 87–109 (1975).
  • [2] Andrada, A., Barberis, M. L., Dotti, I. G., Ovando, G. P.: Product structures on four dimensional solvable Lie algebras. Homol. Homotopy Appl 7, 9-37 (2005)
  • [3] Arvanitoyeorgos, A., Panagiotis Souris, N.: Two-step homogeneous geodesics in homogeneous spaces. Taiwanese J. Math. 20 (6), 1313- 1333 (2016)
  • [4] Ateş, O., Munteanu, M. I., Periodic J-trajectories on S3 × R. J. Geom. Phys. 133, 141-152 (2018)
  • [5] Berestovskii, V., Nikonorov, Y.: Riemannian Manifolds and Homogeneous Geodesics, Springer Cham., (2020).
  • [6] Biggs, R., Remsing, C. C.: On the classification of real four-dimensional Lie groups. J. Lie Theory 26 (4), 1001-1035 (2016).
  • [7] Chen, B.-Y.: Geometry of Submanifolds and its Applications. Science University of Tokyo, 96 p. (1981)
  • [8] Chen, B.-Y.: Circles in compact homogeneous Riemannian spaces and immersions of finite type. Glasgow Math. J. 44, 93-102 (2002).
  • [9] Chen, B.-Y., Leung, P., Nagano, T.: Totally geodesic submanifolds of symmetric spaces, III. arXiv:1307.7325 [math.DG] (2013).
  • [10] Chen, B.-Y., Maeda, S.: Extrinsic characterizations of circles in a complex projective space imbedded in a Euclidean space. Tokyo J. Math. 19 (1): 169-185 (1996).
  • [11] Chen, B.-Y., Nagano, T.: Totally geodesic submanifolds of symmetric spaces. I. Duke Math. J. 44, 745-755 (1977).
  • [12] Chen, B.-Y., Nagano, T.: Totally geodesic submanifolds of symmetric spaces. II. Duke Math. J. 45, 405-425 (1978).
  • [13] Chen, B.-Y., Piccinni, P.: The canonical foliations of a locally conformal Kähler manifold. Ann. Mat. Pura Appl. (4) 141, 289-305 (1985).
  • [14] D’Atri, J. E. Ziller, W.: Naturally Reductive Metrics and Einstein Metrics on Compact Lie Groups. Mem. Amer. Math. Soc. 215 (1979).
  • [15] D’haene, M.: Submanifolds of the Thurston geometry Sol40 . Master Thesis, KU Leuven (2020).
  • [16] D’haene, M.: Thurston geometries in dimension four from a Riemannian perspective. arXiv:2401.05977v1 [math.DG] (2024).
  • [17] D’haene, M., Inoguchi, J., Van der Veken, J.: Parallel and totally umbilical hypersurfaces of the four-dimensional Thurston geometry Sol40 , Math. Nach., to appear.
  • [18] Djellali, N., Hasni, A., Cherif, A. M., Belkhelfa, M.: Classification of Codazzi and note on minimal hypersurfaces in Nil4. Internat. Elect. J. Geom. 16(2), 707-714 (2023).
  • [19] Dohira, R.: Geodesics in reductive homogeneous spaces. Tsukuba J. Math. 19 (1), 233-243 (1995).
  • [20] Erjavec, Z., Inoguchi, J.: Magnetic curves in H3 × R. J. Korean Math. Soc. 58 (6), 1501-1511 (2021).
  • [21] Erjavec, Z., Inoguchi, J.: J-trajectories in 4-dimensional solvable Lie groups Sol40 . Math. Phys. Anal. Geom. 25, Article number 8 (2022).
  • [22] Erjavec, Z., Inoguchi, J.: Minimal submanifolds in Sol40 . J. Geom. Anal. 33 (9), Paper No. 274, 39 p. (2023).
  • [23] Erjavec, Z., Inoguchi, J.: J–trajectories in 4-dimensional solvable Lie group Sol41 . J. Nonlinear Sci. 33 (6), Paper No. 111, 37 p. (2023).
  • [24] Erjavec, Z., Inoguchi, J.: Minimal submanifolds in Sol41 . Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117 (4), Paper No. 156, 36 p. (2023).
  • [25] Erjavec, Z., Inoguchi, J.: Minimal submanifolds in H3 × R. submitted.
  • [26] Erjavec, Z., Inoguchi, J.: Geodesics and magnetic curves in the 4-dim almost Kähler model space F4. Complex Manifolds, to appear.
  • [27] Filipkiewicz, R.: Four dimensional geometries. Ph. D. Thesis, University of Warwick (1983)
  • [28] Gordon, C. S.: Naturally reductive homogeneous Riemannian manifolds. Canadian J. Math. 37 (3), 467–487 (1985)
  • [29] Gordon, C. S.: Homogeneous Riemannian manifolds whose geodesics are orbits. Topics in Geometry. In memory of Joseph D’Atri (Gindikin, Simon ed.), Boston, MA: Birkhäuser. Prog. Nonlinear Differ. Equ. Appl. 20, 155-174 (1996)
  • [30] Gordon, C., Wilson, E.N.: Isometry groups of Riemannian solvmanifolds. Trans. Am. Math. Soc. 307, 245–269 (1988)
  • [31] Ha, K. Y., Lee, J. B.: Left invariant metrics and curvatures on simply connected three-dimensional Lie groups. Math. Nachr. 282(6), 868-898 (2009)
  • [32] Halverscheid, S., Iannuzzi, A.: On naturally reductive left-invariant metrics of SL(2,R). Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5(2), 171–187 (2006)
  • [33] Hashinaga, T.: On the minimality of the corresponding submanifolds to four-dimensional solvsolitons, Hiroshima Math. J. 44 (2), 173-191 (2014)
  • [34] Hashinaga, T., Tamaru, H., Terada, K.: Milnor-type theorems for left-invariant Riemannian metrics on Lie groups. J. Math. Soc. Japan 68(2), 669-684 (2016)
  • [35] Hillman, J. A.: Geometries and infrasolvmanifolds in dimension 4, Geom. Dedicata 129, 57-72 (2007)
  • [36] Hillman, J. A.: Four-manifolds, Geometries and Knots. Geom. Topol. Monogr. Vol. 5 (2002). Revised version. arXiv:math/0212142v3 [math.GT]
  • [37] Inoguchi, J.: J-trajectories in locally conformal Kähler manifolds with parallel anti-Lee field. Int. Electron. J. Geom. 13 (2), 30-44 (2020)
  • [38] Inoue, M.: On surfaces of class VII0. Invent. Math. 24, 269-310 (1974)
  • [39] Jo, J. H., Lee, J. B.: Nielsen type numbers and homotopy minimal periods for maps on solvmanifolds with Sol41 -geometry. Fixed Point Theory and Applications 175, 1-15 (2015)
  • [40] Kajzer, V. V.: Conjugate points of left-invariant metrics on Lie groups. Soviet Math. 34, 32-44 (1990)
  • [41] Klein, S.: Totally geodesic submanifolds of the complex quadric. Differential Geom. Appl. 26, 79-96 (2008)
  • [42] Klein, S.: Totally geodesic submanifolds of the complex and the quaternionic 2-Grassmannians. Trans. Amer. Math. Soc. 361, 4927-4967 (2009)
  • [43] Klein, S.: Reconstructing the geometric structure of a Riemannian symmetric space from its Satake diagram, Geom. Dedicata 138 (2009), 25-50 (2009)
  • [44] Klein, S.: Totally geodesic subanifolds of the exceptional Riemannian symmetric spaces of rank 2. Osaka J. Math. 47 (2010), 1077-1157 (2010)
  • [45] Kodama, H., Takahara, A., Tamaru, H.: The space of left-invariant metrics on a Lie group up to isometry and scaling. Manuscripta Math. 135(1-2), 229-243 (2011)
  • [46] Kostant, B.: Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifold. Trans. Amer. Math. Soc. 80, 528-542 (1955)
  • [47] Kowalski, O.: Generalized Symmetric Spaces. Lecture Notes in Mathematics. 805. Springer-Verlag, (1980)
  • [48] Kowalski, O., Nikˇcevi´c, S., Vlášek, Z.: Homogeneous geodesics in homogeneous Riemannian manifolds (examples), in: Geometry and Topology of Submanifolds, (Beijing/Berlin, 1999), World Sci. Publishing co., River Edge, NJ, 2000, pp. 104–112.
  • [49] Kowalski, O., Szenthe, J.: On the existence of homogeneous geodesics in homogeneous Riemannian manifolds. Geom. Dedicata 81 (1-3), 209-214 (2000). 84 (1-3), 331-332 (2001)
  • [50] Kowalski, O., Tricerri, F.: Riemannian manifolds of dimension N ≤ 4 admitting a homogeneous structure of class T2. Conf. Semin. Mat. Univ. Bari 222, 24 p. (1987).
  • [51] Kowalski, O., Vanhecke, L.: Four-dimensional naturally reductive homogeneous spaces. Differential geometry on homogeneous spaces, Conf. Torino/Italy 1983, Rend. Semin. Mat., Torino, Fasc. Spec., 223-232 (1983).
  • [52] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Unione Mat. Ital., VII. Ser., B 5 (1), 189-246 (1991).
  • [53] Lauret, J.: Homogeneous nilmanifolds of dimensions 3 and 4. Geom. Dedicata 68, 145–155 (1997)
  • [54] Lauret, J.: Degenerations of Lie algebras and geometry of Lie groups. Differential Geom. Appl. 18(2), 177-194 (2003)
  • [55] Lee, J. B., Lee, K. B., Shin, J., Yi, S.: Unimodular groups of type R3 ⋊ R. J. Korean Math. Soc, 44 (5), 1121-1137 (2007)
  • [56] MacCallum, M. A. H.: On the classification of the real four-dimensional Lie algebras. On Einstein’s Path. (A. Harvey ed.), Springer, New York, 299-317, (1999)
  • [57] Magnin, L.: Sur les algébres de Lie nilpotents de dimension ≤ 7. J. Geom. Phys. 3(1), 119-144 (1986)
  • [58] Manzano, J. M., Torralbo, F., Van der Veken, J.: Parallel mean curvature surfaces in four-dimensional homogeneous spaces. Proceedings Book of International Workshop on Theory of Submanifolds 1, 57-78 (2016)
  • [59] Marinosci, R. A.: Homogeneous geodesics in a three-dimensional Lie group. Comment. Math. Univ. Carolinae 43(2), 261-270 (2002) [60] Mashimo, K., Tojo, K.: Circles in Riemannian symmetric spaces. Kodai Math. J. 22(1), 1-14 (1999)
  • [61] Matsushita, Y.: Geometric structures in four-dimension and almost Hermitian structures. AIP Conference Proceedings 1340(1), 66-80 (2011)
  • [62] Nikolayevsky, Y.: Totally geodesic hypersurfaces of homogeneous spaces. Isr. J. Math. 207, 361-375 (2015)
  • [63] Oguro, T., Sekigawa, K.: Almost Kähler structures on the Riemannian product of a 3-dimensional hyperbolic space and a real line. Tsukuba J. Math. 20(1), 151–161 (1996)
  • [64] Otsuki, T., Tashiro, Y.: On curves in Kaehlerian spaces. Math. J. Okayama Univ. 4, 57–78 (1954)
  • [65] Ovando, G.: Invariant complex structures on solvable real Lie groups, Manuscripta Math. 103, 19-30 (2000)
  • [66] Ovando, G.: Complex, symplectic and Kähler structures on four dimensional Lie groups, Rev. Un. Mat. Argentina 45(2), 55-67 (2004)
  • [67] Patera, J., Winternitz, P.: Subalgebras of real three- and four-dimensional Lie algebras. J. Math. Phys. 18, 1449-1455 (1977)
  • [68] Sawai, H.: Locally conformal Kähler structures on compact solvmanifolds. Osaka J. Math. 49, 1087-1102 (2012)
  • [69] Shin, J.: Isometry groups of unimodular simply connected 3-dimensional Lie groups. Geom. Dedicata 65, 267–290 (1997).
  • [70] Snow, J. E.: Invariant complex structures on four-dimensional solvable real Lie groups. Manuscripta Math. 66, 397-412 (1990)
  • [71] Şukiloviç, T.: Classification of left invariant metrics on 4-dimensional solvable Lie groups. Theoret. Appl. Mech. 47(2), 181-204, 2020
  • [72] Thurston, W. M.: Three-dimensional Geometry and Topology I, Princeton Math. Series, vol. 35 (S. Levy ed.), 1997.
  • [73] Tojo, K.: Totally geodesic submanifolds of naturally reductive homogeneous spaces. Tsukuba J. Math. 20(1), 181-190 (1996)
  • [74] Tojo, K.: Normal homogeneous spaces admitting totally geodesic hypersurfaces. J. Math. Soc. Japan 49(4), 781-815 (1997)
  • [75] Tricerri, F.: Some examples of locally conformal Kähler manifolds. Rend. Sem. Mat. Univ. Politec. Torino 40, 81-92 (1982)
  • [76] Tricerri, F., Vanhecke, L.: Homogeneous Structures on Riemannian Manifolds, London Mathematical Society Lecture Note Series 83, Cambridge University Press, 1983.
  • [77] Tsukada, K.: Totally geodesic hypersurfaces of naturally reductive homogeneous spaces. Osaka J. Math. 33(3), 697-707 (1996).
  • [78] Van Thuong, S.: Classification, cobordism, and curvature of four-dimensional infra-solvmanifolds. Ph. D. Thesis, University of Oklahoma, (2014)
  • [79] Van Thuong, S.: All 4-dimensional infra-solvmanifolds are boundaries. Geom Dedicata 176, 315–328 (2015)
  • [80] Van Thuong, S.: Metrics on 4-dimensional unimodular Lie groups. Ann. Glob. Anal. Geom. 51, 109-128 (2017)
  • [81] Van Thuong, S.: Classification of closed manifolds with Sol41 -geometry. Geom. Dedicata 199, 373-397 (2019)
  • [82] Vinberg, È. B.: Invariant linear connections in a homogeneous space (Russian). Trudy Moskov. Mat. Obšˇc. 9, 191–210 (1960)
  • [83] Wall, C.T.C.: Geometries and geometric structures in real dimension 4 and complex dimension 2. Geometry and Topology, Lecture Notes in Math. 1167 268-292 (1985)
  • [84] Wall, C.T.C.: Geometric structures on compact complex analytic surfaces, Topology 25(2), 119-153 (1986)
  • [85] Wang, H.-C.: Discrete nilpotent subgroups of Lie groups. J. Differ. Geom. 3, 481-492 (1969).
  • [86] Wilson, E. N.: Isometry groups on homogeneous nilmanifolds. Geom Dedicata 12, 337–346 (1982)
  • [87] Yoo, W. S.: On the crystallographic group of Solm,n. J. Chungcheong Math. Soc. 34(1), 17-26 (2021)
Year 2024, , 106 - 136, 23.04.2024
https://doi.org/10.36890/iejg.1429782

Abstract

References

  • [1] Alekseevskii, D.V.: Homogeneous Riemannian spaces of negative curvature. Mat. Sb. 96(138), 87–109 (1975).
  • [2] Andrada, A., Barberis, M. L., Dotti, I. G., Ovando, G. P.: Product structures on four dimensional solvable Lie algebras. Homol. Homotopy Appl 7, 9-37 (2005)
  • [3] Arvanitoyeorgos, A., Panagiotis Souris, N.: Two-step homogeneous geodesics in homogeneous spaces. Taiwanese J. Math. 20 (6), 1313- 1333 (2016)
  • [4] Ateş, O., Munteanu, M. I., Periodic J-trajectories on S3 × R. J. Geom. Phys. 133, 141-152 (2018)
  • [5] Berestovskii, V., Nikonorov, Y.: Riemannian Manifolds and Homogeneous Geodesics, Springer Cham., (2020).
  • [6] Biggs, R., Remsing, C. C.: On the classification of real four-dimensional Lie groups. J. Lie Theory 26 (4), 1001-1035 (2016).
  • [7] Chen, B.-Y.: Geometry of Submanifolds and its Applications. Science University of Tokyo, 96 p. (1981)
  • [8] Chen, B.-Y.: Circles in compact homogeneous Riemannian spaces and immersions of finite type. Glasgow Math. J. 44, 93-102 (2002).
  • [9] Chen, B.-Y., Leung, P., Nagano, T.: Totally geodesic submanifolds of symmetric spaces, III. arXiv:1307.7325 [math.DG] (2013).
  • [10] Chen, B.-Y., Maeda, S.: Extrinsic characterizations of circles in a complex projective space imbedded in a Euclidean space. Tokyo J. Math. 19 (1): 169-185 (1996).
  • [11] Chen, B.-Y., Nagano, T.: Totally geodesic submanifolds of symmetric spaces. I. Duke Math. J. 44, 745-755 (1977).
  • [12] Chen, B.-Y., Nagano, T.: Totally geodesic submanifolds of symmetric spaces. II. Duke Math. J. 45, 405-425 (1978).
  • [13] Chen, B.-Y., Piccinni, P.: The canonical foliations of a locally conformal Kähler manifold. Ann. Mat. Pura Appl. (4) 141, 289-305 (1985).
  • [14] D’Atri, J. E. Ziller, W.: Naturally Reductive Metrics and Einstein Metrics on Compact Lie Groups. Mem. Amer. Math. Soc. 215 (1979).
  • [15] D’haene, M.: Submanifolds of the Thurston geometry Sol40 . Master Thesis, KU Leuven (2020).
  • [16] D’haene, M.: Thurston geometries in dimension four from a Riemannian perspective. arXiv:2401.05977v1 [math.DG] (2024).
  • [17] D’haene, M., Inoguchi, J., Van der Veken, J.: Parallel and totally umbilical hypersurfaces of the four-dimensional Thurston geometry Sol40 , Math. Nach., to appear.
  • [18] Djellali, N., Hasni, A., Cherif, A. M., Belkhelfa, M.: Classification of Codazzi and note on minimal hypersurfaces in Nil4. Internat. Elect. J. Geom. 16(2), 707-714 (2023).
  • [19] Dohira, R.: Geodesics in reductive homogeneous spaces. Tsukuba J. Math. 19 (1), 233-243 (1995).
  • [20] Erjavec, Z., Inoguchi, J.: Magnetic curves in H3 × R. J. Korean Math. Soc. 58 (6), 1501-1511 (2021).
  • [21] Erjavec, Z., Inoguchi, J.: J-trajectories in 4-dimensional solvable Lie groups Sol40 . Math. Phys. Anal. Geom. 25, Article number 8 (2022).
  • [22] Erjavec, Z., Inoguchi, J.: Minimal submanifolds in Sol40 . J. Geom. Anal. 33 (9), Paper No. 274, 39 p. (2023).
  • [23] Erjavec, Z., Inoguchi, J.: J–trajectories in 4-dimensional solvable Lie group Sol41 . J. Nonlinear Sci. 33 (6), Paper No. 111, 37 p. (2023).
  • [24] Erjavec, Z., Inoguchi, J.: Minimal submanifolds in Sol41 . Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117 (4), Paper No. 156, 36 p. (2023).
  • [25] Erjavec, Z., Inoguchi, J.: Minimal submanifolds in H3 × R. submitted.
  • [26] Erjavec, Z., Inoguchi, J.: Geodesics and magnetic curves in the 4-dim almost Kähler model space F4. Complex Manifolds, to appear.
  • [27] Filipkiewicz, R.: Four dimensional geometries. Ph. D. Thesis, University of Warwick (1983)
  • [28] Gordon, C. S.: Naturally reductive homogeneous Riemannian manifolds. Canadian J. Math. 37 (3), 467–487 (1985)
  • [29] Gordon, C. S.: Homogeneous Riemannian manifolds whose geodesics are orbits. Topics in Geometry. In memory of Joseph D’Atri (Gindikin, Simon ed.), Boston, MA: Birkhäuser. Prog. Nonlinear Differ. Equ. Appl. 20, 155-174 (1996)
  • [30] Gordon, C., Wilson, E.N.: Isometry groups of Riemannian solvmanifolds. Trans. Am. Math. Soc. 307, 245–269 (1988)
  • [31] Ha, K. Y., Lee, J. B.: Left invariant metrics and curvatures on simply connected three-dimensional Lie groups. Math. Nachr. 282(6), 868-898 (2009)
  • [32] Halverscheid, S., Iannuzzi, A.: On naturally reductive left-invariant metrics of SL(2,R). Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5(2), 171–187 (2006)
  • [33] Hashinaga, T.: On the minimality of the corresponding submanifolds to four-dimensional solvsolitons, Hiroshima Math. J. 44 (2), 173-191 (2014)
  • [34] Hashinaga, T., Tamaru, H., Terada, K.: Milnor-type theorems for left-invariant Riemannian metrics on Lie groups. J. Math. Soc. Japan 68(2), 669-684 (2016)
  • [35] Hillman, J. A.: Geometries and infrasolvmanifolds in dimension 4, Geom. Dedicata 129, 57-72 (2007)
  • [36] Hillman, J. A.: Four-manifolds, Geometries and Knots. Geom. Topol. Monogr. Vol. 5 (2002). Revised version. arXiv:math/0212142v3 [math.GT]
  • [37] Inoguchi, J.: J-trajectories in locally conformal Kähler manifolds with parallel anti-Lee field. Int. Electron. J. Geom. 13 (2), 30-44 (2020)
  • [38] Inoue, M.: On surfaces of class VII0. Invent. Math. 24, 269-310 (1974)
  • [39] Jo, J. H., Lee, J. B.: Nielsen type numbers and homotopy minimal periods for maps on solvmanifolds with Sol41 -geometry. Fixed Point Theory and Applications 175, 1-15 (2015)
  • [40] Kajzer, V. V.: Conjugate points of left-invariant metrics on Lie groups. Soviet Math. 34, 32-44 (1990)
  • [41] Klein, S.: Totally geodesic submanifolds of the complex quadric. Differential Geom. Appl. 26, 79-96 (2008)
  • [42] Klein, S.: Totally geodesic submanifolds of the complex and the quaternionic 2-Grassmannians. Trans. Amer. Math. Soc. 361, 4927-4967 (2009)
  • [43] Klein, S.: Reconstructing the geometric structure of a Riemannian symmetric space from its Satake diagram, Geom. Dedicata 138 (2009), 25-50 (2009)
  • [44] Klein, S.: Totally geodesic subanifolds of the exceptional Riemannian symmetric spaces of rank 2. Osaka J. Math. 47 (2010), 1077-1157 (2010)
  • [45] Kodama, H., Takahara, A., Tamaru, H.: The space of left-invariant metrics on a Lie group up to isometry and scaling. Manuscripta Math. 135(1-2), 229-243 (2011)
  • [46] Kostant, B.: Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifold. Trans. Amer. Math. Soc. 80, 528-542 (1955)
  • [47] Kowalski, O.: Generalized Symmetric Spaces. Lecture Notes in Mathematics. 805. Springer-Verlag, (1980)
  • [48] Kowalski, O., Nikˇcevi´c, S., Vlášek, Z.: Homogeneous geodesics in homogeneous Riemannian manifolds (examples), in: Geometry and Topology of Submanifolds, (Beijing/Berlin, 1999), World Sci. Publishing co., River Edge, NJ, 2000, pp. 104–112.
  • [49] Kowalski, O., Szenthe, J.: On the existence of homogeneous geodesics in homogeneous Riemannian manifolds. Geom. Dedicata 81 (1-3), 209-214 (2000). 84 (1-3), 331-332 (2001)
  • [50] Kowalski, O., Tricerri, F.: Riemannian manifolds of dimension N ≤ 4 admitting a homogeneous structure of class T2. Conf. Semin. Mat. Univ. Bari 222, 24 p. (1987).
  • [51] Kowalski, O., Vanhecke, L.: Four-dimensional naturally reductive homogeneous spaces. Differential geometry on homogeneous spaces, Conf. Torino/Italy 1983, Rend. Semin. Mat., Torino, Fasc. Spec., 223-232 (1983).
  • [52] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Unione Mat. Ital., VII. Ser., B 5 (1), 189-246 (1991).
  • [53] Lauret, J.: Homogeneous nilmanifolds of dimensions 3 and 4. Geom. Dedicata 68, 145–155 (1997)
  • [54] Lauret, J.: Degenerations of Lie algebras and geometry of Lie groups. Differential Geom. Appl. 18(2), 177-194 (2003)
  • [55] Lee, J. B., Lee, K. B., Shin, J., Yi, S.: Unimodular groups of type R3 ⋊ R. J. Korean Math. Soc, 44 (5), 1121-1137 (2007)
  • [56] MacCallum, M. A. H.: On the classification of the real four-dimensional Lie algebras. On Einstein’s Path. (A. Harvey ed.), Springer, New York, 299-317, (1999)
  • [57] Magnin, L.: Sur les algébres de Lie nilpotents de dimension ≤ 7. J. Geom. Phys. 3(1), 119-144 (1986)
  • [58] Manzano, J. M., Torralbo, F., Van der Veken, J.: Parallel mean curvature surfaces in four-dimensional homogeneous spaces. Proceedings Book of International Workshop on Theory of Submanifolds 1, 57-78 (2016)
  • [59] Marinosci, R. A.: Homogeneous geodesics in a three-dimensional Lie group. Comment. Math. Univ. Carolinae 43(2), 261-270 (2002) [60] Mashimo, K., Tojo, K.: Circles in Riemannian symmetric spaces. Kodai Math. J. 22(1), 1-14 (1999)
  • [61] Matsushita, Y.: Geometric structures in four-dimension and almost Hermitian structures. AIP Conference Proceedings 1340(1), 66-80 (2011)
  • [62] Nikolayevsky, Y.: Totally geodesic hypersurfaces of homogeneous spaces. Isr. J. Math. 207, 361-375 (2015)
  • [63] Oguro, T., Sekigawa, K.: Almost Kähler structures on the Riemannian product of a 3-dimensional hyperbolic space and a real line. Tsukuba J. Math. 20(1), 151–161 (1996)
  • [64] Otsuki, T., Tashiro, Y.: On curves in Kaehlerian spaces. Math. J. Okayama Univ. 4, 57–78 (1954)
  • [65] Ovando, G.: Invariant complex structures on solvable real Lie groups, Manuscripta Math. 103, 19-30 (2000)
  • [66] Ovando, G.: Complex, symplectic and Kähler structures on four dimensional Lie groups, Rev. Un. Mat. Argentina 45(2), 55-67 (2004)
  • [67] Patera, J., Winternitz, P.: Subalgebras of real three- and four-dimensional Lie algebras. J. Math. Phys. 18, 1449-1455 (1977)
  • [68] Sawai, H.: Locally conformal Kähler structures on compact solvmanifolds. Osaka J. Math. 49, 1087-1102 (2012)
  • [69] Shin, J.: Isometry groups of unimodular simply connected 3-dimensional Lie groups. Geom. Dedicata 65, 267–290 (1997).
  • [70] Snow, J. E.: Invariant complex structures on four-dimensional solvable real Lie groups. Manuscripta Math. 66, 397-412 (1990)
  • [71] Şukiloviç, T.: Classification of left invariant metrics on 4-dimensional solvable Lie groups. Theoret. Appl. Mech. 47(2), 181-204, 2020
  • [72] Thurston, W. M.: Three-dimensional Geometry and Topology I, Princeton Math. Series, vol. 35 (S. Levy ed.), 1997.
  • [73] Tojo, K.: Totally geodesic submanifolds of naturally reductive homogeneous spaces. Tsukuba J. Math. 20(1), 181-190 (1996)
  • [74] Tojo, K.: Normal homogeneous spaces admitting totally geodesic hypersurfaces. J. Math. Soc. Japan 49(4), 781-815 (1997)
  • [75] Tricerri, F.: Some examples of locally conformal Kähler manifolds. Rend. Sem. Mat. Univ. Politec. Torino 40, 81-92 (1982)
  • [76] Tricerri, F., Vanhecke, L.: Homogeneous Structures on Riemannian Manifolds, London Mathematical Society Lecture Note Series 83, Cambridge University Press, 1983.
  • [77] Tsukada, K.: Totally geodesic hypersurfaces of naturally reductive homogeneous spaces. Osaka J. Math. 33(3), 697-707 (1996).
  • [78] Van Thuong, S.: Classification, cobordism, and curvature of four-dimensional infra-solvmanifolds. Ph. D. Thesis, University of Oklahoma, (2014)
  • [79] Van Thuong, S.: All 4-dimensional infra-solvmanifolds are boundaries. Geom Dedicata 176, 315–328 (2015)
  • [80] Van Thuong, S.: Metrics on 4-dimensional unimodular Lie groups. Ann. Glob. Anal. Geom. 51, 109-128 (2017)
  • [81] Van Thuong, S.: Classification of closed manifolds with Sol41 -geometry. Geom. Dedicata 199, 373-397 (2019)
  • [82] Vinberg, È. B.: Invariant linear connections in a homogeneous space (Russian). Trudy Moskov. Mat. Obšˇc. 9, 191–210 (1960)
  • [83] Wall, C.T.C.: Geometries and geometric structures in real dimension 4 and complex dimension 2. Geometry and Topology, Lecture Notes in Math. 1167 268-292 (1985)
  • [84] Wall, C.T.C.: Geometric structures on compact complex analytic surfaces, Topology 25(2), 119-153 (1986)
  • [85] Wang, H.-C.: Discrete nilpotent subgroups of Lie groups. J. Differ. Geom. 3, 481-492 (1969).
  • [86] Wilson, E. N.: Isometry groups on homogeneous nilmanifolds. Geom Dedicata 12, 337–346 (1982)
  • [87] Yoo, W. S.: On the crystallographic group of Solm,n. J. Chungcheong Math. Soc. 34(1), 17-26 (2021)
There are 86 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Jun-ichi Inoguchı 0000-0002-6584-5739

Early Pub Date April 5, 2024
Publication Date April 23, 2024
Submission Date February 1, 2024
Acceptance Date March 24, 2024
Published in Issue Year 2024

Cite

APA Inoguchı, J.-i. (2024). Homogeneous Geodesics of $4$-dimensional Solvable Lie Groups. International Electronic Journal of Geometry, 17(1), 106-136. https://doi.org/10.36890/iejg.1429782
AMA Inoguchı Ji. Homogeneous Geodesics of $4$-dimensional Solvable Lie Groups. Int. Electron. J. Geom. April 2024;17(1):106-136. doi:10.36890/iejg.1429782
Chicago Inoguchı, Jun-ichi. “Homogeneous Geodesics of $4$-Dimensional Solvable Lie Groups”. International Electronic Journal of Geometry 17, no. 1 (April 2024): 106-36. https://doi.org/10.36890/iejg.1429782.
EndNote Inoguchı J-i (April 1, 2024) Homogeneous Geodesics of $4$-dimensional Solvable Lie Groups. International Electronic Journal of Geometry 17 1 106–136.
IEEE J.-i. Inoguchı, “Homogeneous Geodesics of $4$-dimensional Solvable Lie Groups”, Int. Electron. J. Geom., vol. 17, no. 1, pp. 106–136, 2024, doi: 10.36890/iejg.1429782.
ISNAD Inoguchı, Jun-ichi. “Homogeneous Geodesics of $4$-Dimensional Solvable Lie Groups”. International Electronic Journal of Geometry 17/1 (April 2024), 106-136. https://doi.org/10.36890/iejg.1429782.
JAMA Inoguchı J-i. Homogeneous Geodesics of $4$-dimensional Solvable Lie Groups. Int. Electron. J. Geom. 2024;17:106–136.
MLA Inoguchı, Jun-ichi. “Homogeneous Geodesics of $4$-Dimensional Solvable Lie Groups”. International Electronic Journal of Geometry, vol. 17, no. 1, 2024, pp. 106-3, doi:10.36890/iejg.1429782.
Vancouver Inoguchı J-i. Homogeneous Geodesics of $4$-dimensional Solvable Lie Groups. Int. Electron. J. Geom. 2024;17(1):106-3.