Research Article
BibTex RIS Cite
Year 2024, , 252 - 258, 23.04.2024
https://doi.org/10.36890/iejg.1438073

Abstract

Project Number

2-15-2014

References

  • [1] Alghanemi, A., Khan, M.A.: Position Vectors of the Natural Mate and Conjugate of a Space Curve. Adv. Math. Phys., 1-5 (2023). https://doi.org/10.1155/2023/7565988
  • [2] Bertrand, J.M.: M’emoire sur la th’eorie des courbes a’ double courbure. Comptes Rendus. 15 (1), 332-350 (1850).
  • [3] Camci, Ç., Chen, B.-Y., ˙Ilarslan, K. et al.: Sequential natural mates of Frenet curves in Euclidean 3-space. J. Geom. 112, 46 (2021). https://doi.org/10.1007/s00022-021-00610-6
  • [4] Chen, B.-Y.: When does the position vector of a space curve always lie in its rectifying plane?. Amer. Math. Monthly. 110, 147-152 (2003).
  • [5] Choi, J. H., Kim, Y. H.: Associated curves of a Frenet curve and their applications. Appl. Math. Comput. 218 (18), 9116-9124 (2012). https://doi.org/10.1016/j.amc.2012.02.064
  • [6] Deshmukh S., Chen B.-Y., Alghanemi A.: Natural mates of Frenet curves in Euclidean 3-space. Turk. J. Math. 42, 2826–2840 (2018).
  • [7] Deshmukh, S., Chen B.-Y., Turki N.B.: A differential equations for Frenet curves in Euclidean 3-space and its applications. Rom. J. Math. Comput. Sci. 8, 1-6 (2018).
  • [8] Menninger, T.: Characterization of the slant helix as successor curve of the general helix. Int. Electron. J. Geom. 7, 84-91 (2014).

Extending Natural Mates in Euclidean 3-space and Applications to Bertrand Pairs

Year 2024, , 252 - 258, 23.04.2024
https://doi.org/10.36890/iejg.1438073

Abstract

In Euclidean 3-space, a family of curves, the co-successor, is motivated and then introduced in relation to the natural mate. A complete characterization of co-successors is proved, followed by an application of the co-successor towards describing Bertrand curves and their mates.

Ethical Statement

This is joint work with Alex and has not been submitted anywhere else.

Supporting Institution

Andrews University

Project Number

2-15-2014

Thanks

Thank you for this exceptional opportunity!

References

  • [1] Alghanemi, A., Khan, M.A.: Position Vectors of the Natural Mate and Conjugate of a Space Curve. Adv. Math. Phys., 1-5 (2023). https://doi.org/10.1155/2023/7565988
  • [2] Bertrand, J.M.: M’emoire sur la th’eorie des courbes a’ double courbure. Comptes Rendus. 15 (1), 332-350 (1850).
  • [3] Camci, Ç., Chen, B.-Y., ˙Ilarslan, K. et al.: Sequential natural mates of Frenet curves in Euclidean 3-space. J. Geom. 112, 46 (2021). https://doi.org/10.1007/s00022-021-00610-6
  • [4] Chen, B.-Y.: When does the position vector of a space curve always lie in its rectifying plane?. Amer. Math. Monthly. 110, 147-152 (2003).
  • [5] Choi, J. H., Kim, Y. H.: Associated curves of a Frenet curve and their applications. Appl. Math. Comput. 218 (18), 9116-9124 (2012). https://doi.org/10.1016/j.amc.2012.02.064
  • [6] Deshmukh S., Chen B.-Y., Alghanemi A.: Natural mates of Frenet curves in Euclidean 3-space. Turk. J. Math. 42, 2826–2840 (2018).
  • [7] Deshmukh, S., Chen B.-Y., Turki N.B.: A differential equations for Frenet curves in Euclidean 3-space and its applications. Rom. J. Math. Comput. Sci. 8, 1-6 (2018).
  • [8] Menninger, T.: Characterization of the slant helix as successor curve of the general helix. Int. Electron. J. Geom. 7, 84-91 (2014).
There are 8 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Alexander Navarro 0000-0003-3545-1891

Yun Myung Oh 0000-0002-6526-8863

Project Number 2-15-2014
Early Pub Date April 12, 2024
Publication Date April 23, 2024
Submission Date February 16, 2024
Acceptance Date April 6, 2024
Published in Issue Year 2024

Cite

APA Navarro, A., & Oh, Y. M. (2024). Extending Natural Mates in Euclidean 3-space and Applications to Bertrand Pairs. International Electronic Journal of Geometry, 17(1), 252-258. https://doi.org/10.36890/iejg.1438073
AMA Navarro A, Oh YM. Extending Natural Mates in Euclidean 3-space and Applications to Bertrand Pairs. Int. Electron. J. Geom. April 2024;17(1):252-258. doi:10.36890/iejg.1438073
Chicago Navarro, Alexander, and Yun Myung Oh. “Extending Natural Mates in Euclidean 3-Space and Applications to Bertrand Pairs”. International Electronic Journal of Geometry 17, no. 1 (April 2024): 252-58. https://doi.org/10.36890/iejg.1438073.
EndNote Navarro A, Oh YM (April 1, 2024) Extending Natural Mates in Euclidean 3-space and Applications to Bertrand Pairs. International Electronic Journal of Geometry 17 1 252–258.
IEEE A. Navarro and Y. M. Oh, “Extending Natural Mates in Euclidean 3-space and Applications to Bertrand Pairs”, Int. Electron. J. Geom., vol. 17, no. 1, pp. 252–258, 2024, doi: 10.36890/iejg.1438073.
ISNAD Navarro, Alexander - Oh, Yun Myung. “Extending Natural Mates in Euclidean 3-Space and Applications to Bertrand Pairs”. International Electronic Journal of Geometry 17/1 (April 2024), 252-258. https://doi.org/10.36890/iejg.1438073.
JAMA Navarro A, Oh YM. Extending Natural Mates in Euclidean 3-space and Applications to Bertrand Pairs. Int. Electron. J. Geom. 2024;17:252–258.
MLA Navarro, Alexander and Yun Myung Oh. “Extending Natural Mates in Euclidean 3-Space and Applications to Bertrand Pairs”. International Electronic Journal of Geometry, vol. 17, no. 1, 2024, pp. 252-8, doi:10.36890/iejg.1438073.
Vancouver Navarro A, Oh YM. Extending Natural Mates in Euclidean 3-space and Applications to Bertrand Pairs. Int. Electron. J. Geom. 2024;17(1):252-8.