In the paper we investigate locally symmetric polynomial metrics in special cases of Riemannian and Finslerian surfaces. The Riemannian case will be presented by a collection of basic results (regularity of second root metrics) and formulas up to Gauss curvature. In case of Finslerian surfaces we formulate necessary and sufficient conditions for a locally symmetric fourth root metric in 2D to be positive definite. They are given in terms of the coefficients of the polynomial metric to make checking the positive definiteness as simple and direct as possible. Explicit examples are also presented. The situation is more complicated in case of spaces of dimension more than two. Some necessary conditions and an explicit example are given for a positive definite locally symmetric polynomial metric in 3D. Computations are supported by the MAPLE mathematics software (LinearAlgebra).
[6] Majidi, J., Tayebi A., Haji-Badali, A.: On Einstein-reversible m-th root Finsler metrics. Int. J. Geom. Methods Mod. Phys. 20(6), Paper No.
2350099, 14 pp(2023).
[7] Matsumoto, M., Okubo, K.: Theory of Finsler spaces with m-th root metric. Tensor (N.S.), 56, 9–104(1995).
[8] Shimada, H.: On Finsler spaces with the metric $L=\sqrt[m]{a_{i_1 \ldots i_m} y^{i_1}\cdot \ldots \cdot y^{i_m}}$. Tensor (N.S.), 33, 365–372(1979).
[9] Tayebi, A.: On the theory of 4-th root Finsler metrics. Tbil. Math. J. 12 (1), 83–92(2019).
[10] Tayebi, A., Najafi, B.: On m-th root metrics. J. Geom. Phys. 61, 1479–1484(2011).
[11] Tamássy, L.: Finsler Spaces with Polynomial Metric. Hypercomplex Numbers in Geometry and Physics, 2 (6) Vol. 3, 85–92( 2006).
[12] Tiwari, B., Kumar, M., Tayebi, A.: On generalized Kropina change of generalized m-th root Finsler metrics. Proc. Nat. Acad. Sci. India Sect. A91
(3), 443–450(2021).
[13] Vincze, Cs.: On a special type of generalized Berwald manifolds: semi-symmetric linear connections preserving the Finslerian length of tangent
vectors. European Journal of Mathematics, Finsler Geometry: New methods and Perspectives, Volume 3 Issue 4, 1098–1171, (December
2017).
[6] Majidi, J., Tayebi A., Haji-Badali, A.: On Einstein-reversible m-th root Finsler metrics. Int. J. Geom. Methods Mod. Phys. 20(6), Paper No.
2350099, 14 pp(2023).
[7] Matsumoto, M., Okubo, K.: Theory of Finsler spaces with m-th root metric. Tensor (N.S.), 56, 9–104(1995).
[8] Shimada, H.: On Finsler spaces with the metric $L=\sqrt[m]{a_{i_1 \ldots i_m} y^{i_1}\cdot \ldots \cdot y^{i_m}}$. Tensor (N.S.), 33, 365–372(1979).
[9] Tayebi, A.: On the theory of 4-th root Finsler metrics. Tbil. Math. J. 12 (1), 83–92(2019).
[10] Tayebi, A., Najafi, B.: On m-th root metrics. J. Geom. Phys. 61, 1479–1484(2011).
[11] Tamássy, L.: Finsler Spaces with Polynomial Metric. Hypercomplex Numbers in Geometry and Physics, 2 (6) Vol. 3, 85–92( 2006).
[12] Tiwari, B., Kumar, M., Tayebi, A.: On generalized Kropina change of generalized m-th root Finsler metrics. Proc. Nat. Acad. Sci. India Sect. A91
(3), 443–450(2021).
[13] Vincze, Cs.: On a special type of generalized Berwald manifolds: semi-symmetric linear connections preserving the Finslerian length of tangent
vectors. European Journal of Mathematics, Finsler Geometry: New methods and Perspectives, Volume 3 Issue 4, 1098–1171, (December
2017).
Vincze, C., Olah, M., & Nagy, A. (2024). On Locally Symmetric Polynomial Metrics: Riemannian and Finslerian surfaces. International Electronic Journal of Geometry, 17(2), 679-699. https://doi.org/10.36890/iejg.1454779
AMA
Vincze C, Olah M, Nagy A. On Locally Symmetric Polynomial Metrics: Riemannian and Finslerian surfaces. Int. Electron. J. Geom. October 2024;17(2):679-699. doi:10.36890/iejg.1454779
Chicago
Vincze, Csaba, Mark Olah, and Abris Nagy. “On Locally Symmetric Polynomial Metrics: Riemannian and Finslerian Surfaces”. International Electronic Journal of Geometry 17, no. 2 (October 2024): 679-99. https://doi.org/10.36890/iejg.1454779.
EndNote
Vincze C, Olah M, Nagy A (October 1, 2024) On Locally Symmetric Polynomial Metrics: Riemannian and Finslerian surfaces. International Electronic Journal of Geometry 17 2 679–699.
IEEE
C. Vincze, M. Olah, and A. Nagy, “On Locally Symmetric Polynomial Metrics: Riemannian and Finslerian surfaces”, Int. Electron. J. Geom., vol. 17, no. 2, pp. 679–699, 2024, doi: 10.36890/iejg.1454779.
ISNAD
Vincze, Csaba et al. “On Locally Symmetric Polynomial Metrics: Riemannian and Finslerian Surfaces”. International Electronic Journal of Geometry 17/2 (October 2024), 679-699. https://doi.org/10.36890/iejg.1454779.
JAMA
Vincze C, Olah M, Nagy A. On Locally Symmetric Polynomial Metrics: Riemannian and Finslerian surfaces. Int. Electron. J. Geom. 2024;17:679–699.
MLA
Vincze, Csaba et al. “On Locally Symmetric Polynomial Metrics: Riemannian and Finslerian Surfaces”. International Electronic Journal of Geometry, vol. 17, no. 2, 2024, pp. 679-9, doi:10.36890/iejg.1454779.
Vancouver
Vincze C, Olah M, Nagy A. On Locally Symmetric Polynomial Metrics: Riemannian and Finslerian surfaces. Int. Electron. J. Geom. 2024;17(2):679-9.