Research Article
BibTex RIS Cite

Geometric Study of a Family of Integrable Systems

Year 2018, , 78 - 92, 30.04.2018
https://doi.org/10.36890/iejg.545100

Abstract

The aim of this paper is to demonstrate the rich interaction between complex algebraic geometry,
the theory of integrable systems and the geometry of its asymptotic solutions.We present a family
of integrable hamiltonian systems. We study theses systems from a different angle, assemble
different geometric methods and several views.

References

  • [1] Adler, M., van Moerbeke, P., Linearization of Hamiltonian systems, Jacobi varieties and representation theory. Adv. in Math. 38 (1980), 318-379.
  • [2] Adler, M., van Moerbeke, P., The complex geometry of the Kowalewski-Painlevé analysis. Invent. Math. 7 (1989), 3-51.
  • [3] Adler, M., van Moerbeke, P. and Vanhaecke, P., Algebraic integrability, Painlevé geometry and Lie algebras. A series of modern surveys in mathematics, Volume 47, Springer-Verlag, 2004.
  • [4] Airault. H., Mc Kean, H.P. and Moser, J., Rational and elliptic solutions of the KdV equation and a related many-body problem. Comm. Pure Appl. Math. 30 (1977), 94-148.
  • [5] Arnold, V.I., Mathematical methods in classical mechanics. Springer-Verlag, Berlin-Heidelberg- New York, 1978.
  • [6] Baker, S., Enolskii, V.Z. and Fordy, A.P., Integrable quartic potentials and coupled KdV equations. Phys. Lett. 201A (1995), 167-174.
  • [7] Barth, W., Abelian surfaces with (1; 2)􀀀polarization. Conf. on alg. geom., Sendai, 1985, Advanced studies in pure mathematics, 10 (1987), 41-84.
  • [8] Barth, W., Affine parts of abelian surfaces as complete intersections of four quadrics. Math. Ann. 278 (1987), 117-131.
  • [9] Belokolos, A.I. and Enol’skii, V.Z., Isospectral deformations of elliptic potentials. Russ. Math. Surveys, 44 (1989), 155-156.
  • [10] Belokolos, A.I., Bobenko, V.Z., Enol’skii, V.Z., Its, A.R. and Matveev, V.B., Algebro-Geometric approach to nonlinear integrable equations. Springer-Verlag 1994.
  • [11] Bountis, T., Segur, H. and Vivaldi, F., Integrable hamiltonian systems and the Painlevé property. Phys. Rev. A25 (1982), 1257-1264.
  • [12] Christiansen, P.L., Eilbeck, J.C., Enolskii, V.Z. and Kostov, N.A., Quasi-periodic solutions of the coupled nonlinear Schrödinger equations. Proc. R. Soc. Lond. A451 (1995), 685-700.
  • [13] Conte, R., Musette, M. and Verhoeven, C., Completeness of the cubic and quartic Hénon-Heiles hamiltonians. Theor. Math. Phys. 144 (2005), 888-898.
  • [14] Eilbeck, J.C., Enolskii, V.Z., Kuznetsov, V.B. and Leykin, D.V., Linear r-matrix algebra for systems separable in parabolic coordinates. Phys. Lett. 180A (1993), 208-214.
  • [15] Eilbeck, J.C., Enolskii, V.Z., Kuznetsov, V.B. and Tsiganov, A.V., Linear r-matrix algebra for classical separable systems. J. Phys. A.: Math. Gen. 27 (1994), 567-578.
  • [16] Eilbeck, J.C., Enolskii, V.Z., Elliptic solutions and blow-up in an integrable Hénon-Heiles system. Proc. Roy. Soc. Edinburgh, A124 (1994), 1151-1164.
  • [17] Grammaticos, B. Dorozzi, B., Ramani, A., Integrability of hamiltonians with third and fourth-degree polynomial potentials. J. Math. Phys. 24 (1983), 2289-2295.
  • [18] Griffiths, P.A., Harris,J., Principles of algebraic geometry.Wiley-Interscience 1978.
  • [19] Haine, L., Geodesic flow on SO(4) and Abelian surfaces. Math. Ann. 263 (1983), 435-472.
  • [20] Halphen, G. H., Mémoire sur la réduction des équations différentielles linéaires aux formes intégrales. Mémoires présentés par divers savants à l’Académie des sciences de l’Institut de France 28, 1-307, 1884.
  • [21] Hermite, C., Oeuvres de Charles Hermites. Vol. III, Paris, Gauthier-Villar, 1912.
  • [22] Hietarinta, J., Classical versus quantum integrability. J. Math. Phys. 25 (1984), 1833-1840.
  • [23] Hietarinta, J., Direct methods for the search of the second invariant. Phys. Rep. 147 (1987), 87-154.
  • [24] Kasperczuk, S., Integrability of the Yang-Mills hamiltonian system. Celes. Mech. and Dyn. Astr. 58 (1994), 387-391. Erratum Celes. Mech. and Dyn. Astr. 60 (1994), 289.
  • [25] Kostov, N.A., Quasi-periodical solutions of the integrable dynamical systems related to Hill’s equation. Lett. Math. Phys. 17 (1989), 95-104.
  • [26] Kowalewski, S., Sur le problème de la rotation d’un corps solide autour d’un point fixe. Acta Math. 12 (1889), 177-232.
  • [27] Lesfari, A., Abelian surfaces and Kowalewski’s top. Ann. Scient. École Norm. Sup. Paris, 4e série, t.21 (1988), 193-223.
  • [28] Lesfari, A., Prym varieties and applications. J. Geom. Phys., 58, 1063-1079 (2008).
  • [29] Lesfari, A., Integrable systems and complex geometry. Lobachevskii Journal of Mathematics, Vol.30, No.4, 292-326 (2009).
  • [30] Lesfari, A.: Algebraic integrability : the Adler-van Moerbeke approach. Regul. Chaotic Dyn. 16 (2011), Nos.3-4, pp.187-209.
  • [31] Lesfari, A., Introduction à la géométrie algébrique complexe. Hermann, Paris 2015.
  • [32] McKean, H.P. and van Moerbeke, P., The Spectrum of Hill’s Equation. Invent. Math. 30 (1975), 217-274.
  • [33] Moser, J., Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16 (1975), 197-219.
  • [34] Moser, J., Geometry of quadrics and spectral theory. Lecture delivred at the symposium in honor of S.S. Chern, Berkeley, 1979. Springer, Berlin, Heidelberg, New-York 1980.
  • [35] Mumford, D., On the equations defining abelian varieties I, II, III. Invent. Math. 1 (1966), 287-354, 3 (1967), 75-135, 3 (1967), 215-244.
  • [36] Mumford, D., Tata lectures on theta I, II. Progress in mathematics. Birkhaüser, Boston, 1983.
  • [37] Novikov, S.P., The periodic problem for Korteweg-de Vries equation. Funct. Anal. Pril. 8 (1974), 53-66.
  • [38] Perelomov, A.M., Integrable systems of classical mechanics and Lie algebras. Birkhäuser Verlag 1990.
  • [39] Ravoson, V., Ramani, A. and Grammaticos, B., Generalized separability for a hamiltonian with nonseparable quartic potential. Phys. Lett. 191A (1994), 91-95.
  • [40] Smirnov, A. O., Finite-gap elliptic solutions of the KdV equation. Acta Appl. Math. 36 (1994), 125-199.
  • [41] Tondo, G., On the integrability of stationary and restricted flows of the KdV hierarchy. J. Phys. A: Mat. Gen. 28 (1995), 5097-5115.
  • [42] Vanhaecke, P., Linearising two-dimensional integrable systems and the construction of action-angle variables. Math. Z. 211 (1992), 265-313.
  • [43] Vanhaecke, P., Integrable systems in the realm of algebraic geometry. Lecture Notes in Math. 1638, Springer-Verlag, 2001.
  • [44] van Moerbeke, P. and Mumford, D., The spectrum of difference operators and algebraic curves. Acta Math. 143 (1979), 93-154.
  • [45] Verhoeven, C., Musette, M. and Conte, R., General solution of hamiltonians withs extend cubic and quartic potentials. Theor. Math. Phys. 134 (2003), 128-138.
  • [46] Wojciechowski, S., On a Lax-type representation and separability of the anisotropic harmonic oscillator in a radial quartic potential. Lett. Nuovo Cimento, 41 (1984), 361-369.
  • [47] Wojciechowski, S., Integrability of one particle in a perturbed central quartic potential. Physica Scripta, 31 (1985), 433-438.
  • [48] Yoshida, H., Existence of exponentially unstable solutions and the non-integrability of homogeneous hamiltonian. Physica D, 21 (1986), 163-170.
  • [49] Zakharov, V.E., Manakov, S.V., Novikov, S.P. and Pitaevskii, L.P., Soliton theory, inverse scattering method. Moscow: Nauka, 1980.
  • [50] Ziglin, S.L., Branching of solutions and non-existence of first integrals in hamiltonian mechanics II. Funct. Anal. and its appl. 17 (1983), 6-17.
Year 2018, , 78 - 92, 30.04.2018
https://doi.org/10.36890/iejg.545100

Abstract

References

  • [1] Adler, M., van Moerbeke, P., Linearization of Hamiltonian systems, Jacobi varieties and representation theory. Adv. in Math. 38 (1980), 318-379.
  • [2] Adler, M., van Moerbeke, P., The complex geometry of the Kowalewski-Painlevé analysis. Invent. Math. 7 (1989), 3-51.
  • [3] Adler, M., van Moerbeke, P. and Vanhaecke, P., Algebraic integrability, Painlevé geometry and Lie algebras. A series of modern surveys in mathematics, Volume 47, Springer-Verlag, 2004.
  • [4] Airault. H., Mc Kean, H.P. and Moser, J., Rational and elliptic solutions of the KdV equation and a related many-body problem. Comm. Pure Appl. Math. 30 (1977), 94-148.
  • [5] Arnold, V.I., Mathematical methods in classical mechanics. Springer-Verlag, Berlin-Heidelberg- New York, 1978.
  • [6] Baker, S., Enolskii, V.Z. and Fordy, A.P., Integrable quartic potentials and coupled KdV equations. Phys. Lett. 201A (1995), 167-174.
  • [7] Barth, W., Abelian surfaces with (1; 2)􀀀polarization. Conf. on alg. geom., Sendai, 1985, Advanced studies in pure mathematics, 10 (1987), 41-84.
  • [8] Barth, W., Affine parts of abelian surfaces as complete intersections of four quadrics. Math. Ann. 278 (1987), 117-131.
  • [9] Belokolos, A.I. and Enol’skii, V.Z., Isospectral deformations of elliptic potentials. Russ. Math. Surveys, 44 (1989), 155-156.
  • [10] Belokolos, A.I., Bobenko, V.Z., Enol’skii, V.Z., Its, A.R. and Matveev, V.B., Algebro-Geometric approach to nonlinear integrable equations. Springer-Verlag 1994.
  • [11] Bountis, T., Segur, H. and Vivaldi, F., Integrable hamiltonian systems and the Painlevé property. Phys. Rev. A25 (1982), 1257-1264.
  • [12] Christiansen, P.L., Eilbeck, J.C., Enolskii, V.Z. and Kostov, N.A., Quasi-periodic solutions of the coupled nonlinear Schrödinger equations. Proc. R. Soc. Lond. A451 (1995), 685-700.
  • [13] Conte, R., Musette, M. and Verhoeven, C., Completeness of the cubic and quartic Hénon-Heiles hamiltonians. Theor. Math. Phys. 144 (2005), 888-898.
  • [14] Eilbeck, J.C., Enolskii, V.Z., Kuznetsov, V.B. and Leykin, D.V., Linear r-matrix algebra for systems separable in parabolic coordinates. Phys. Lett. 180A (1993), 208-214.
  • [15] Eilbeck, J.C., Enolskii, V.Z., Kuznetsov, V.B. and Tsiganov, A.V., Linear r-matrix algebra for classical separable systems. J. Phys. A.: Math. Gen. 27 (1994), 567-578.
  • [16] Eilbeck, J.C., Enolskii, V.Z., Elliptic solutions and blow-up in an integrable Hénon-Heiles system. Proc. Roy. Soc. Edinburgh, A124 (1994), 1151-1164.
  • [17] Grammaticos, B. Dorozzi, B., Ramani, A., Integrability of hamiltonians with third and fourth-degree polynomial potentials. J. Math. Phys. 24 (1983), 2289-2295.
  • [18] Griffiths, P.A., Harris,J., Principles of algebraic geometry.Wiley-Interscience 1978.
  • [19] Haine, L., Geodesic flow on SO(4) and Abelian surfaces. Math. Ann. 263 (1983), 435-472.
  • [20] Halphen, G. H., Mémoire sur la réduction des équations différentielles linéaires aux formes intégrales. Mémoires présentés par divers savants à l’Académie des sciences de l’Institut de France 28, 1-307, 1884.
  • [21] Hermite, C., Oeuvres de Charles Hermites. Vol. III, Paris, Gauthier-Villar, 1912.
  • [22] Hietarinta, J., Classical versus quantum integrability. J. Math. Phys. 25 (1984), 1833-1840.
  • [23] Hietarinta, J., Direct methods for the search of the second invariant. Phys. Rep. 147 (1987), 87-154.
  • [24] Kasperczuk, S., Integrability of the Yang-Mills hamiltonian system. Celes. Mech. and Dyn. Astr. 58 (1994), 387-391. Erratum Celes. Mech. and Dyn. Astr. 60 (1994), 289.
  • [25] Kostov, N.A., Quasi-periodical solutions of the integrable dynamical systems related to Hill’s equation. Lett. Math. Phys. 17 (1989), 95-104.
  • [26] Kowalewski, S., Sur le problème de la rotation d’un corps solide autour d’un point fixe. Acta Math. 12 (1889), 177-232.
  • [27] Lesfari, A., Abelian surfaces and Kowalewski’s top. Ann. Scient. École Norm. Sup. Paris, 4e série, t.21 (1988), 193-223.
  • [28] Lesfari, A., Prym varieties and applications. J. Geom. Phys., 58, 1063-1079 (2008).
  • [29] Lesfari, A., Integrable systems and complex geometry. Lobachevskii Journal of Mathematics, Vol.30, No.4, 292-326 (2009).
  • [30] Lesfari, A.: Algebraic integrability : the Adler-van Moerbeke approach. Regul. Chaotic Dyn. 16 (2011), Nos.3-4, pp.187-209.
  • [31] Lesfari, A., Introduction à la géométrie algébrique complexe. Hermann, Paris 2015.
  • [32] McKean, H.P. and van Moerbeke, P., The Spectrum of Hill’s Equation. Invent. Math. 30 (1975), 217-274.
  • [33] Moser, J., Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16 (1975), 197-219.
  • [34] Moser, J., Geometry of quadrics and spectral theory. Lecture delivred at the symposium in honor of S.S. Chern, Berkeley, 1979. Springer, Berlin, Heidelberg, New-York 1980.
  • [35] Mumford, D., On the equations defining abelian varieties I, II, III. Invent. Math. 1 (1966), 287-354, 3 (1967), 75-135, 3 (1967), 215-244.
  • [36] Mumford, D., Tata lectures on theta I, II. Progress in mathematics. Birkhaüser, Boston, 1983.
  • [37] Novikov, S.P., The periodic problem for Korteweg-de Vries equation. Funct. Anal. Pril. 8 (1974), 53-66.
  • [38] Perelomov, A.M., Integrable systems of classical mechanics and Lie algebras. Birkhäuser Verlag 1990.
  • [39] Ravoson, V., Ramani, A. and Grammaticos, B., Generalized separability for a hamiltonian with nonseparable quartic potential. Phys. Lett. 191A (1994), 91-95.
  • [40] Smirnov, A. O., Finite-gap elliptic solutions of the KdV equation. Acta Appl. Math. 36 (1994), 125-199.
  • [41] Tondo, G., On the integrability of stationary and restricted flows of the KdV hierarchy. J. Phys. A: Mat. Gen. 28 (1995), 5097-5115.
  • [42] Vanhaecke, P., Linearising two-dimensional integrable systems and the construction of action-angle variables. Math. Z. 211 (1992), 265-313.
  • [43] Vanhaecke, P., Integrable systems in the realm of algebraic geometry. Lecture Notes in Math. 1638, Springer-Verlag, 2001.
  • [44] van Moerbeke, P. and Mumford, D., The spectrum of difference operators and algebraic curves. Acta Math. 143 (1979), 93-154.
  • [45] Verhoeven, C., Musette, M. and Conte, R., General solution of hamiltonians withs extend cubic and quartic potentials. Theor. Math. Phys. 134 (2003), 128-138.
  • [46] Wojciechowski, S., On a Lax-type representation and separability of the anisotropic harmonic oscillator in a radial quartic potential. Lett. Nuovo Cimento, 41 (1984), 361-369.
  • [47] Wojciechowski, S., Integrability of one particle in a perturbed central quartic potential. Physica Scripta, 31 (1985), 433-438.
  • [48] Yoshida, H., Existence of exponentially unstable solutions and the non-integrability of homogeneous hamiltonian. Physica D, 21 (1986), 163-170.
  • [49] Zakharov, V.E., Manakov, S.V., Novikov, S.P. and Pitaevskii, L.P., Soliton theory, inverse scattering method. Moscow: Nauka, 1980.
  • [50] Ziglin, S.L., Branching of solutions and non-existence of first integrals in hamiltonian mechanics II. Funct. Anal. and its appl. 17 (1983), 6-17.
There are 50 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Ahmed Lesfari

Publication Date April 30, 2018
Published in Issue Year 2018

Cite

APA Lesfari, A. (2018). Geometric Study of a Family of Integrable Systems. International Electronic Journal of Geometry, 11(1), 78-92. https://doi.org/10.36890/iejg.545100
AMA Lesfari A. Geometric Study of a Family of Integrable Systems. Int. Electron. J. Geom. April 2018;11(1):78-92. doi:10.36890/iejg.545100
Chicago Lesfari, Ahmed. “Geometric Study of a Family of Integrable Systems”. International Electronic Journal of Geometry 11, no. 1 (April 2018): 78-92. https://doi.org/10.36890/iejg.545100.
EndNote Lesfari A (April 1, 2018) Geometric Study of a Family of Integrable Systems. International Electronic Journal of Geometry 11 1 78–92.
IEEE A. Lesfari, “Geometric Study of a Family of Integrable Systems”, Int. Electron. J. Geom., vol. 11, no. 1, pp. 78–92, 2018, doi: 10.36890/iejg.545100.
ISNAD Lesfari, Ahmed. “Geometric Study of a Family of Integrable Systems”. International Electronic Journal of Geometry 11/1 (April 2018), 78-92. https://doi.org/10.36890/iejg.545100.
JAMA Lesfari A. Geometric Study of a Family of Integrable Systems. Int. Electron. J. Geom. 2018;11:78–92.
MLA Lesfari, Ahmed. “Geometric Study of a Family of Integrable Systems”. International Electronic Journal of Geometry, vol. 11, no. 1, 2018, pp. 78-92, doi:10.36890/iejg.545100.
Vancouver Lesfari A. Geometric Study of a Family of Integrable Systems. Int. Electron. J. Geom. 2018;11(1):78-92.