[1] Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds. Boston. Birkhauser 2002.
[2] Caddeo, R., Montaldo, S. and Oniciuc, C., Biharmonic submanifolds of S3. Internat. J. Math. 12 (2001), 867-876.
[3] Caddeo, R., Montaldo, S. and Oniciuc, C., Biharmonic submanifolds in spheres. Israel J. Math. 130 (2002), 109-123.
[4] Caddeo, R., Montaldo, S. and Piu, P., Biharmonic curves on a surface. Rend. Mat. Appl. 21 (2001), 143-157.
[5] Caddeo, R., Montaldo, S., Oniciuc, C. and Piu, P., The classification of biharmonic curves of Cartan-Vranceanu 3-dimensional spaces. The
7th Int. Workshop on Dif. Geo. and its Appl. 121-131, Cluj Univ. Press, Cluj-Napoca, 2006.
[6] Course, N., f-harmonic maps. Ph.D thesis, University of Warwick, Coventry, (2004) CV4 7AL, UK.
[7] Caddeo, R., Oniciuc, C. and Piu, P., Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group. Rend. Sem. Mat. Univ.
Politec. Torino. 62 (2004), 265-277.
[8] Eells, J. Jr. and Sampson, J. H., Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964), 109-160.
[9] Güvenç, ¸S. and Özgür, C., On the characterizations of f-biharmonic Legendre curves in Sasakian space forms. Filomat. 31 (2017), 639-648.
[10] Inoguchi, J., Biminimal submanifolds in contact 3-manifolds. Balkan J. Geom. Appl. 12 (2007), 56-67.
[11] Jiang, G. Y., 2-Harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A. 7 (1986), 389-402.
[12] Lu,W-J., On f-Biharmonic maps and bi-f-harmonic maps between Riemannian manifolds. Sci. China Math. 58 (2015), 1483-1498.
[13] Ouakkas, S., Nasri,R. and Djaa, M., On the f-harmonic and f-biharmonic maps. JP Journal of Geom. and Top. 10 (2010), 11-27.
[14] Ou, Y-L., On f-biharmonic maps and f-biharmonic submanifolds. Pacific J. Math. 271 (2014), 461-477.
[15] Ou, Y-L. and Wang, Z-P., Biharmonic maps into Sol and Nil spaces. arXiv preprint math/0612329 (2006).
[16] Ou, Y-L. and Wang, Z-P., Linear biharmonic maps into Sol, Nil and Heisenberg spaces. Mediterr. J. Math. 5 (2008), 379-394.
[17] Perrone, D., Homogeneous contact Riemannian three-manifolds. Illinois J. Math. 42 (1998), 243-256.
[18] Troyanov-EPFL, M., L’horizon de SOL. Exposition. Math. 16 (1998).
[1] Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds. Boston. Birkhauser 2002.
[2] Caddeo, R., Montaldo, S. and Oniciuc, C., Biharmonic submanifolds of S3. Internat. J. Math. 12 (2001), 867-876.
[3] Caddeo, R., Montaldo, S. and Oniciuc, C., Biharmonic submanifolds in spheres. Israel J. Math. 130 (2002), 109-123.
[4] Caddeo, R., Montaldo, S. and Piu, P., Biharmonic curves on a surface. Rend. Mat. Appl. 21 (2001), 143-157.
[5] Caddeo, R., Montaldo, S., Oniciuc, C. and Piu, P., The classification of biharmonic curves of Cartan-Vranceanu 3-dimensional spaces. The
7th Int. Workshop on Dif. Geo. and its Appl. 121-131, Cluj Univ. Press, Cluj-Napoca, 2006.
[6] Course, N., f-harmonic maps. Ph.D thesis, University of Warwick, Coventry, (2004) CV4 7AL, UK.
[7] Caddeo, R., Oniciuc, C. and Piu, P., Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group. Rend. Sem. Mat. Univ.
Politec. Torino. 62 (2004), 265-277.
[8] Eells, J. Jr. and Sampson, J. H., Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964), 109-160.
[9] Güvenç, ¸S. and Özgür, C., On the characterizations of f-biharmonic Legendre curves in Sasakian space forms. Filomat. 31 (2017), 639-648.
[10] Inoguchi, J., Biminimal submanifolds in contact 3-manifolds. Balkan J. Geom. Appl. 12 (2007), 56-67.
[11] Jiang, G. Y., 2-Harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A. 7 (1986), 389-402.
[12] Lu,W-J., On f-Biharmonic maps and bi-f-harmonic maps between Riemannian manifolds. Sci. China Math. 58 (2015), 1483-1498.
[13] Ouakkas, S., Nasri,R. and Djaa, M., On the f-harmonic and f-biharmonic maps. JP Journal of Geom. and Top. 10 (2010), 11-27.
[14] Ou, Y-L., On f-biharmonic maps and f-biharmonic submanifolds. Pacific J. Math. 271 (2014), 461-477.
[15] Ou, Y-L. and Wang, Z-P., Biharmonic maps into Sol and Nil spaces. arXiv preprint math/0612329 (2006).
[16] Ou, Y-L. and Wang, Z-P., Linear biharmonic maps into Sol, Nil and Heisenberg spaces. Mediterr. J. Math. 5 (2008), 379-394.
[17] Perrone, D., Homogeneous contact Riemannian three-manifolds. Illinois J. Math. 42 (1998), 243-256.
[18] Troyanov-EPFL, M., L’horizon de SOL. Exposition. Math. 16 (1998).
Karaca, F., & Özgür, C. (2018). On f-Biharmonic Curves. International Electronic Journal of Geometry, 11(2), 18-27. https://doi.org/10.36890/iejg.545115
AMA
Karaca F, Özgür C. On f-Biharmonic Curves. Int. Electron. J. Geom. November 2018;11(2):18-27. doi:10.36890/iejg.545115
Chicago
Karaca, Fatma, and Cihan Özgür. “On F-Biharmonic Curves”. International Electronic Journal of Geometry 11, no. 2 (November 2018): 18-27. https://doi.org/10.36890/iejg.545115.
EndNote
Karaca F, Özgür C (November 1, 2018) On f-Biharmonic Curves. International Electronic Journal of Geometry 11 2 18–27.
IEEE
F. Karaca and C. Özgür, “On f-Biharmonic Curves”, Int. Electron. J. Geom., vol. 11, no. 2, pp. 18–27, 2018, doi: 10.36890/iejg.545115.
ISNAD
Karaca, Fatma - Özgür, Cihan. “On F-Biharmonic Curves”. International Electronic Journal of Geometry 11/2 (November 2018), 18-27. https://doi.org/10.36890/iejg.545115.
JAMA
Karaca F, Özgür C. On f-Biharmonic Curves. Int. Electron. J. Geom. 2018;11:18–27.
MLA
Karaca, Fatma and Cihan Özgür. “On F-Biharmonic Curves”. International Electronic Journal of Geometry, vol. 11, no. 2, 2018, pp. 18-27, doi:10.36890/iejg.545115.
Vancouver
Karaca F, Özgür C. On f-Biharmonic Curves. Int. Electron. J. Geom. 2018;11(2):18-27.