Research Article
BibTex RIS Cite

THE ISOMETRY GROUP OF CHINESE CHECKER SPACE

Year 2015, , 82 - 96, 30.10.2015
https://doi.org/10.36890/iejg.592291

Abstract


References

  • [1] Chen, B.-Y. and Garay, O. J., An extremal class of conformally flat submanifolds in Euclidean spaces, Acta Math. Hungar., 111(2006), no. 4, 263-303.
  • [2] Duggal, Krishan L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers, Dordrecht, 1996.
  • [3] Amstrong, M. A., Groups and Symmetry Springer-Verlag New York Inc., 1988.
  • [4] Chen, G., Lines and Circles in Taxicab Geometry Master Thesis, Department of Mathematics and Computer Science, Central Missouri State Uni, 1992.
  • [5] Çolakoğlu, H. B. and Kaya, R., On The Regular Polygons in The Chinese Checker Plane, Appl. Sci. 10 (2008) 29-37.
  • [6] Gelişgen, Ö ., Kaya, R. and Özcan, M., Distance Formulae in the Chinese Checker Space, Int. J. Pure Appl. Math. 26 (2006), no. 1, 35–44.
  • [7] Geli¸sgen, Ö . and Kaya, R., Alpha(i) Distance in n-dimensional Space, Appl. Sci. 10 (2008), 88–93.
  • [8] Gelişgen, Ö. and Kaya, R., The Taxicab Space Group, Acta Math. Hungar. 122 (2009), no. 1-2, 187–200.
  • [9] Kaya, R., Gelişgen, Ö ., Ekmekc¸i S. and Bayar, A., Group of Isometries of CC-Plane, Missouri J. Math. Sci. 18 (2006) 221–233.
  • [10] Kaya, R., Geli¸sgen, Ö ., Ekmekçi S. and Bayar, A., On The Group of Isometries of The Plane with Generalized Absolute Value Metric, Rocky Mountain J. Math. 39 (2009), no. 2, 591–603.
  • [11] Krause, E. F., Taxicab Geometry Addison - Wesley Publishing Company, Menlo Park, CA, 1975.
  • [12] Martin, G. E., Transformation Geometry Springer-Verlag New York Inc., 1997.
  • [13] Schattschneider, D. J., The Taxicab Group, Amer. Math. Monthly 91 (1984) 423-428.
  • [14] Shen, C. F. C., The Lambda-Geometry Steiner Minimal Tree Problem and Visualization, Phd Thesis, Department of Mathematics and Computer Science, Central Missouri State Uni, 1997.
  • [15] So, S. S., Recent Development in Metric Geometry, Proceedings of the 5.th National Geometry Symposioum, University of Sakarya, (Sakarya), 2005.
  • [16] Thompson, A. C., Minkowski Geometry Cambridge University Press, 1996.
  • [17] http://en.wikipedia.org/wiki/Rotation matrix
Year 2015, , 82 - 96, 30.10.2015
https://doi.org/10.36890/iejg.592291

Abstract

References

  • [1] Chen, B.-Y. and Garay, O. J., An extremal class of conformally flat submanifolds in Euclidean spaces, Acta Math. Hungar., 111(2006), no. 4, 263-303.
  • [2] Duggal, Krishan L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers, Dordrecht, 1996.
  • [3] Amstrong, M. A., Groups and Symmetry Springer-Verlag New York Inc., 1988.
  • [4] Chen, G., Lines and Circles in Taxicab Geometry Master Thesis, Department of Mathematics and Computer Science, Central Missouri State Uni, 1992.
  • [5] Çolakoğlu, H. B. and Kaya, R., On The Regular Polygons in The Chinese Checker Plane, Appl. Sci. 10 (2008) 29-37.
  • [6] Gelişgen, Ö ., Kaya, R. and Özcan, M., Distance Formulae in the Chinese Checker Space, Int. J. Pure Appl. Math. 26 (2006), no. 1, 35–44.
  • [7] Geli¸sgen, Ö . and Kaya, R., Alpha(i) Distance in n-dimensional Space, Appl. Sci. 10 (2008), 88–93.
  • [8] Gelişgen, Ö. and Kaya, R., The Taxicab Space Group, Acta Math. Hungar. 122 (2009), no. 1-2, 187–200.
  • [9] Kaya, R., Gelişgen, Ö ., Ekmekc¸i S. and Bayar, A., Group of Isometries of CC-Plane, Missouri J. Math. Sci. 18 (2006) 221–233.
  • [10] Kaya, R., Geli¸sgen, Ö ., Ekmekçi S. and Bayar, A., On The Group of Isometries of The Plane with Generalized Absolute Value Metric, Rocky Mountain J. Math. 39 (2009), no. 2, 591–603.
  • [11] Krause, E. F., Taxicab Geometry Addison - Wesley Publishing Company, Menlo Park, CA, 1975.
  • [12] Martin, G. E., Transformation Geometry Springer-Verlag New York Inc., 1997.
  • [13] Schattschneider, D. J., The Taxicab Group, Amer. Math. Monthly 91 (1984) 423-428.
  • [14] Shen, C. F. C., The Lambda-Geometry Steiner Minimal Tree Problem and Visualization, Phd Thesis, Department of Mathematics and Computer Science, Central Missouri State Uni, 1997.
  • [15] So, S. S., Recent Development in Metric Geometry, Proceedings of the 5.th National Geometry Symposioum, University of Sakarya, (Sakarya), 2005.
  • [16] Thompson, A. C., Minkowski Geometry Cambridge University Press, 1996.
  • [17] http://en.wikipedia.org/wiki/Rotation matrix
There are 17 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Özcan Gelişgen

Rüstem Kaya This is me

Publication Date October 30, 2015
Published in Issue Year 2015

Cite

APA Gelişgen, Ö., & Kaya, R. (2015). THE ISOMETRY GROUP OF CHINESE CHECKER SPACE. International Electronic Journal of Geometry, 8(2), 82-96. https://doi.org/10.36890/iejg.592291
AMA Gelişgen Ö, Kaya R. THE ISOMETRY GROUP OF CHINESE CHECKER SPACE. Int. Electron. J. Geom. October 2015;8(2):82-96. doi:10.36890/iejg.592291
Chicago Gelişgen, Özcan, and Rüstem Kaya. “THE ISOMETRY GROUP OF CHINESE CHECKER SPACE”. International Electronic Journal of Geometry 8, no. 2 (October 2015): 82-96. https://doi.org/10.36890/iejg.592291.
EndNote Gelişgen Ö, Kaya R (October 1, 2015) THE ISOMETRY GROUP OF CHINESE CHECKER SPACE. International Electronic Journal of Geometry 8 2 82–96.
IEEE Ö. Gelişgen and R. Kaya, “THE ISOMETRY GROUP OF CHINESE CHECKER SPACE”, Int. Electron. J. Geom., vol. 8, no. 2, pp. 82–96, 2015, doi: 10.36890/iejg.592291.
ISNAD Gelişgen, Özcan - Kaya, Rüstem. “THE ISOMETRY GROUP OF CHINESE CHECKER SPACE”. International Electronic Journal of Geometry 8/2 (October 2015), 82-96. https://doi.org/10.36890/iejg.592291.
JAMA Gelişgen Ö, Kaya R. THE ISOMETRY GROUP OF CHINESE CHECKER SPACE. Int. Electron. J. Geom. 2015;8:82–96.
MLA Gelişgen, Özcan and Rüstem Kaya. “THE ISOMETRY GROUP OF CHINESE CHECKER SPACE”. International Electronic Journal of Geometry, vol. 8, no. 2, 2015, pp. 82-96, doi:10.36890/iejg.592291.
Vancouver Gelişgen Ö, Kaya R. THE ISOMETRY GROUP OF CHINESE CHECKER SPACE. Int. Electron. J. Geom. 2015;8(2):82-96.