Research Article
BibTex RIS Cite

ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS

Year 2015, , 14 - 20, 30.04.2015
https://doi.org/10.36890/iejg.592790

Abstract


References

  • [1] Amari, S.-I., Differential-Geometrical Methods in Statistics, Springer Lecture Notes in Sta- tistics, Springer-Verlag, 1985.
  • [2] Amari, S.-I., and Nagaoka, H., Methods of Information Geometry, AMS Translation of Math. Monographs, Oxford University Press, 2000.
  • [3] Balan, V. Brinzei, N. and S. Lebedev., Geodesics, paths and Jacobi fields for Berwald-Moo´r quartic metrics, Hypercomplex Numbers. Geom. Phys., 2(6), vol. 3, (2006), 113-122.
  • [4] Balan, V. and Brinzei, N., Einstein equations for (h, v)-Berwald-Moo´r relativistic models, Balkan. J. Geom. Appl., 11(2)(2006), 20-26.
  • [5] Balan, V., Spectra of symmetric tensors and m-root Finsler models, Linear Algebra Appl., 436(1) (2012), 152-162.
  • [6] Crampin, M., Randers spaces with reversible geodesics, Publ. Math. Debrecen, 67(2005), 401-409.
  • [7] Hashiguchi, H. and Ichijyo, Y., Randers spaces with rectilinear geodetics, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chem.)., 13(1980), 33-40.
  • [8] Li, B. and Shen, Z., On projectively flat fourth root metrics, Canad. Math. Bull., 55(2012), 138-145.
  • [9] Matsumoto, M., On Finsler spaces with Randers metric and special forms of important tensors, J. Math Kyoto Univ., 14(1975), 477-498.
  • [10] Matsumoto, M. and Shimada, H., On Finsler spaces with 1-form metric. II. Berwald-Moo´r’s metric L = (y1y2...yn)1/n, Tensor N. S., 32(1978), 275-278.
  • [11] Shen, Z., Riemann-Finsler geometry with applications to information geometry, Chin. Ann. Math. 27(2006), 73-94.
  • [12] Shibata, C., On invariant tensors of β-changes of Finsler metrics, J. Math. Kyoto Univ., 24(1984), 163-188.
  • [13] Shimada, H., On Finsler spaces with metric L =(a_i1 a_i2...a_im y^1i y^2i ...y^mi)(1/m) , Tensor, N.S., 33(1979), 365-372.
  • [14] Tayebi, A. and Najafi, B., On m-th root Finsler metrics, J. Geom. Phys., 61(2011), 1479-1484.
  • [15] Tayebi, A. and Najafi, B., On m-th root metrics with special curvature properties, C. R. Acad. Sci. Paris, Ser. I., 349(2011), 691-693.
  • [16] Tayebi, A. Peyghan, E. and Shahbazi, M., On generalized m-th root Finsler metrics, Linear Algebra. Appl., 437(2012), 675-683.
  • [17] Tayebi, A. Tabatabaei Far, T. and Peyghan, E., On Kropina-change of m-th root Finsler metrics, Ukrainian. J. Math, 66(1) (2014), 140-144.
  • [18] Tayebi, A. and Peyghan, E., On Douglas spaces with vanishing E¯-curvature, Inter. Elec. J. Geom. 5(1) (2012), 36-41.
Year 2015, , 14 - 20, 30.04.2015
https://doi.org/10.36890/iejg.592790

Abstract

References

  • [1] Amari, S.-I., Differential-Geometrical Methods in Statistics, Springer Lecture Notes in Sta- tistics, Springer-Verlag, 1985.
  • [2] Amari, S.-I., and Nagaoka, H., Methods of Information Geometry, AMS Translation of Math. Monographs, Oxford University Press, 2000.
  • [3] Balan, V. Brinzei, N. and S. Lebedev., Geodesics, paths and Jacobi fields for Berwald-Moo´r quartic metrics, Hypercomplex Numbers. Geom. Phys., 2(6), vol. 3, (2006), 113-122.
  • [4] Balan, V. and Brinzei, N., Einstein equations for (h, v)-Berwald-Moo´r relativistic models, Balkan. J. Geom. Appl., 11(2)(2006), 20-26.
  • [5] Balan, V., Spectra of symmetric tensors and m-root Finsler models, Linear Algebra Appl., 436(1) (2012), 152-162.
  • [6] Crampin, M., Randers spaces with reversible geodesics, Publ. Math. Debrecen, 67(2005), 401-409.
  • [7] Hashiguchi, H. and Ichijyo, Y., Randers spaces with rectilinear geodetics, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chem.)., 13(1980), 33-40.
  • [8] Li, B. and Shen, Z., On projectively flat fourth root metrics, Canad. Math. Bull., 55(2012), 138-145.
  • [9] Matsumoto, M., On Finsler spaces with Randers metric and special forms of important tensors, J. Math Kyoto Univ., 14(1975), 477-498.
  • [10] Matsumoto, M. and Shimada, H., On Finsler spaces with 1-form metric. II. Berwald-Moo´r’s metric L = (y1y2...yn)1/n, Tensor N. S., 32(1978), 275-278.
  • [11] Shen, Z., Riemann-Finsler geometry with applications to information geometry, Chin. Ann. Math. 27(2006), 73-94.
  • [12] Shibata, C., On invariant tensors of β-changes of Finsler metrics, J. Math. Kyoto Univ., 24(1984), 163-188.
  • [13] Shimada, H., On Finsler spaces with metric L =(a_i1 a_i2...a_im y^1i y^2i ...y^mi)(1/m) , Tensor, N.S., 33(1979), 365-372.
  • [14] Tayebi, A. and Najafi, B., On m-th root Finsler metrics, J. Geom. Phys., 61(2011), 1479-1484.
  • [15] Tayebi, A. and Najafi, B., On m-th root metrics with special curvature properties, C. R. Acad. Sci. Paris, Ser. I., 349(2011), 691-693.
  • [16] Tayebi, A. Peyghan, E. and Shahbazi, M., On generalized m-th root Finsler metrics, Linear Algebra. Appl., 437(2012), 675-683.
  • [17] Tayebi, A. Tabatabaei Far, T. and Peyghan, E., On Kropina-change of m-th root Finsler metrics, Ukrainian. J. Math, 66(1) (2014), 140-144.
  • [18] Tayebi, A. and Peyghan, E., On Douglas spaces with vanishing E¯-curvature, Inter. Elec. J. Geom. 5(1) (2012), 36-41.
There are 18 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

A. Tayebı This is me

M. Shahbazi Nıa This is me

E. Peyghan

Publication Date April 30, 2015
Published in Issue Year 2015

Cite

APA Tayebı, A., Nıa, M. S., & Peyghan, E. (2015). ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS. International Electronic Journal of Geometry, 8(1), 14-20. https://doi.org/10.36890/iejg.592790
AMA Tayebı A, Nıa MS, Peyghan E. ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS. Int. Electron. J. Geom. April 2015;8(1):14-20. doi:10.36890/iejg.592790
Chicago Tayebı, A., M. Shahbazi Nıa, and E. Peyghan. “ON RANDERS CHANGE OF M-TH ROOT FINSLER METRICS”. International Electronic Journal of Geometry 8, no. 1 (April 2015): 14-20. https://doi.org/10.36890/iejg.592790.
EndNote Tayebı A, Nıa MS, Peyghan E (April 1, 2015) ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS. International Electronic Journal of Geometry 8 1 14–20.
IEEE A. Tayebı, M. S. Nıa, and E. Peyghan, “ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS”, Int. Electron. J. Geom., vol. 8, no. 1, pp. 14–20, 2015, doi: 10.36890/iejg.592790.
ISNAD Tayebı, A. et al. “ON RANDERS CHANGE OF M-TH ROOT FINSLER METRICS”. International Electronic Journal of Geometry 8/1 (April 2015), 14-20. https://doi.org/10.36890/iejg.592790.
JAMA Tayebı A, Nıa MS, Peyghan E. ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS. Int. Electron. J. Geom. 2015;8:14–20.
MLA Tayebı, A. et al. “ON RANDERS CHANGE OF M-TH ROOT FINSLER METRICS”. International Electronic Journal of Geometry, vol. 8, no. 1, 2015, pp. 14-20, doi:10.36890/iejg.592790.
Vancouver Tayebı A, Nıa MS, Peyghan E. ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS. Int. Electron. J. Geom. 2015;8(1):14-20.