[1] Arslan, K. and Murathan, C., Tensor Product Surfaces of Pseudo-Euclidean Planar Curves,
Geometry and Topology of Submanifolds, VII, World Scientific, (1994), 71-75.
[2] Chen,B.Y., Geometry of Submanifolds, Dekker, New York, 1973.
[3] Chen, B.Y., Differential Geometry of Semiring of Immersions, I:General Theory, Bull. Inst.
Math. Acad. Sinica, 21(1993),1-34.
[4] Decruyenaere, F., Dillen, F., Mihai, I., Verstraelen, L., Tensor Products of Spherical
and Equivariant Immersions, Bull. Belg. Math. Soc. - Simon Stevin, 1(1994), 643-648.
[5] Decruyenaere, F., Dillen, F., Verstraelen, L., Vrancken, L., The Semiring of Immersions of
Manifolds, Beitrage Algebra Geom. 34(1993), 209-215.
[6] Deprez, J., Semi-parallel Surfaces in Euclidean Space, J. Geom., 25(1985), 192-200.,
[7] Deszcz, R., On Pseudosymmetric Spaces, Bull. Soc. Math. Belg., 44 ser. A, (1992), 1-34.
[8] Ferus, D., Symmetric Submanifolds of Euclidean Space, Math. Ann., 247(1980), 81-93.
[9] Guadalupe, I.V., Rodriguez, L., Normal Curvature of Surfaces in Space Forms, Pacific J.
Math., 106(1983), 95-103.
[10] Lumiste, U., Classification of Two-codimensional Semi-symmetric Submanifolds. TRU Toime-
tised, 803(1988), 79-84.
[11] Mihai, I. and Rouxel, B., Tensor product surfaces of Euclidean plane curves, Results in
Mathematics, 27 (1995), no. 3-4, 308-315.
[12] Mihai, I. and Rouxel, B., Tensor product surfaces of Euclidean Plane Curves, Geometry and
Topology of Submanifolds, VII, World Scientific, (1994), 189-192.
[13] Mihai, I., Rosca, R., Verstraelen, L., Vrancken, L., Tensor Product Surfaces of Euclidean
Planar Curves, Rend. Sem. Mat. Messina, 3(1994/1995), 173-184.
[14] Mihai, I., Van de Woestyne, I., Verstraelen, L. and Walrave, J., Tensor Product Surfaces of
Lorentzian Planar Curves, Bull. Inst. Math. Acad. Sinica, 23(1995), no.4, 357-363.
[15] Ozgur, C., Arslan, K., Murathan, C., On a Class of Surfaces in Euclidean Spaces, Commun.
Fac. Sci. Univ. Ank. series A1, 51(2002), 47-54.
[16] Szabo, Z.I., Structure Theorems on Riemannian Spaces Satisfying R(X,Y)·R=0. I. The local
version, J. Differential Geometry, 17(1982), 531-582.
[1] Arslan, K. and Murathan, C., Tensor Product Surfaces of Pseudo-Euclidean Planar Curves,
Geometry and Topology of Submanifolds, VII, World Scientific, (1994), 71-75.
[2] Chen,B.Y., Geometry of Submanifolds, Dekker, New York, 1973.
[3] Chen, B.Y., Differential Geometry of Semiring of Immersions, I:General Theory, Bull. Inst.
Math. Acad. Sinica, 21(1993),1-34.
[4] Decruyenaere, F., Dillen, F., Mihai, I., Verstraelen, L., Tensor Products of Spherical
and Equivariant Immersions, Bull. Belg. Math. Soc. - Simon Stevin, 1(1994), 643-648.
[5] Decruyenaere, F., Dillen, F., Verstraelen, L., Vrancken, L., The Semiring of Immersions of
Manifolds, Beitrage Algebra Geom. 34(1993), 209-215.
[6] Deprez, J., Semi-parallel Surfaces in Euclidean Space, J. Geom., 25(1985), 192-200.,
[7] Deszcz, R., On Pseudosymmetric Spaces, Bull. Soc. Math. Belg., 44 ser. A, (1992), 1-34.
[8] Ferus, D., Symmetric Submanifolds of Euclidean Space, Math. Ann., 247(1980), 81-93.
[9] Guadalupe, I.V., Rodriguez, L., Normal Curvature of Surfaces in Space Forms, Pacific J.
Math., 106(1983), 95-103.
[10] Lumiste, U., Classification of Two-codimensional Semi-symmetric Submanifolds. TRU Toime-
tised, 803(1988), 79-84.
[11] Mihai, I. and Rouxel, B., Tensor product surfaces of Euclidean plane curves, Results in
Mathematics, 27 (1995), no. 3-4, 308-315.
[12] Mihai, I. and Rouxel, B., Tensor product surfaces of Euclidean Plane Curves, Geometry and
Topology of Submanifolds, VII, World Scientific, (1994), 189-192.
[13] Mihai, I., Rosca, R., Verstraelen, L., Vrancken, L., Tensor Product Surfaces of Euclidean
Planar Curves, Rend. Sem. Mat. Messina, 3(1994/1995), 173-184.
[14] Mihai, I., Van de Woestyne, I., Verstraelen, L. and Walrave, J., Tensor Product Surfaces of
Lorentzian Planar Curves, Bull. Inst. Math. Acad. Sinica, 23(1995), no.4, 357-363.
[15] Ozgur, C., Arslan, K., Murathan, C., On a Class of Surfaces in Euclidean Spaces, Commun.
Fac. Sci. Univ. Ank. series A1, 51(2002), 47-54.
[16] Szabo, Z.I., Structure Theorems on Riemannian Spaces Satisfying R(X,Y)·R=0. I. The local
version, J. Differential Geometry, 17(1982), 531-582.
Bulca, B., & Arslan, K. (2014). SEMIPARALLEL TENSOR PRODUCT SURFACES IN E^4. International Electronic Journal of Geometry, 7(1), 36-43. https://doi.org/10.36890/iejg.594494
AMA
Bulca B, Arslan K. SEMIPARALLEL TENSOR PRODUCT SURFACES IN E^4. Int. Electron. J. Geom. April 2014;7(1):36-43. doi:10.36890/iejg.594494
Chicago
Bulca, Betül, and Kadri Arslan. “SEMIPARALLEL TENSOR PRODUCT SURFACES IN E^4”. International Electronic Journal of Geometry 7, no. 1 (April 2014): 36-43. https://doi.org/10.36890/iejg.594494.
EndNote
Bulca B, Arslan K (April 1, 2014) SEMIPARALLEL TENSOR PRODUCT SURFACES IN E^4. International Electronic Journal of Geometry 7 1 36–43.
IEEE
B. Bulca and K. Arslan, “SEMIPARALLEL TENSOR PRODUCT SURFACES IN E^4”, Int. Electron. J. Geom., vol. 7, no. 1, pp. 36–43, 2014, doi: 10.36890/iejg.594494.
ISNAD
Bulca, Betül - Arslan, Kadri. “SEMIPARALLEL TENSOR PRODUCT SURFACES IN E^4”. International Electronic Journal of Geometry 7/1 (April 2014), 36-43. https://doi.org/10.36890/iejg.594494.
JAMA
Bulca B, Arslan K. SEMIPARALLEL TENSOR PRODUCT SURFACES IN E^4. Int. Electron. J. Geom. 2014;7:36–43.
MLA
Bulca, Betül and Kadri Arslan. “SEMIPARALLEL TENSOR PRODUCT SURFACES IN E^4”. International Electronic Journal of Geometry, vol. 7, no. 1, 2014, pp. 36-43, doi:10.36890/iejg.594494.
Vancouver
Bulca B, Arslan K. SEMIPARALLEL TENSOR PRODUCT SURFACES IN E^4. Int. Electron. J. Geom. 2014;7(1):36-43.