Research Article
BibTex RIS Cite

Year 2013, Volume: 6 Issue: 2, 39 - 44, 30.10.2013

Abstract

References

  • [1] An, H. and Deng, S., Invariant (α, β)-metrics on homogeneous manifolds, Monatsh. Math., 154(2008), 89-102.
  • [2] Asanov, G. S., Finsleroid space with angle and scalar product, Publ. Math. Debrecen, 67(2005), 20952.
  • [3] Asanov, G. S., Finsleroid Finsler spaces of positive-definite and relativistic type, Rep. Math. Phys., 58(2006), 275-300.
  • [4] Bao, D., Chern, S. S. and Shen, Z., An Introduction to Riemann-Finsler Geometry, Springer, Berlin, 2000.
  • [5] Chern, S. S. and Shen, Z., Riemann-Finsler Geometry, World Scientific, Nankai Tracts in Mathematics, Vol. 6, 2005.
  • [6] Deng, S. and Hou, Z., Invariant Randers Metrics on Homogeneous Riemannian Manifolds, J. Phys. A: Math. Gen., 37(2004), 4353-4360.
  • [7] Kowalski, O. and Vanhecke, L., Riemannian manifolds with homogeneous geodesics, Boll. Unione. Mat. Ital., 5(1991), 189246.
  • [8] Latifi, D., Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys., 57(2007), 1421-1433.
  • [9] Latifi D. and Razavi, A., Bi-invariant Finsler Metrics on Lie Groups, Australian Journal of Basic and Applied Sciences, 5(2011), no. 12, 507-511.
  • [10] Latifi, D., Bi-invariant Randers metrics on Lie groups, Publ. Math. Debrecen, 76(2010), no. 1-2, 219-226.
  • [11] Matsumoto, M., Theory of Finsler spaces with (α, β)−metric, Rep. Math. Phys., 31(1992), 43-83.
  • [12] Salimi Moghaddam, H. R., The flag curvature of invariant (α, β)-metrics of type (α+ β )^2/α J. Phys. A: Math. Theor., 41(2008), 275206 (6pp).
  • [13] Shen, Z., Lectures on Finsler Geometry, World Scienti c, 2001.

GEODESIC VECTOR FIELDS OF INVARIANT (α, β)-METRICS ON HOMOGENEOUS SPACES

Year 2013, Volume: 6 Issue: 2, 39 - 44, 30.10.2013

Abstract


References

  • [1] An, H. and Deng, S., Invariant (α, β)-metrics on homogeneous manifolds, Monatsh. Math., 154(2008), 89-102.
  • [2] Asanov, G. S., Finsleroid space with angle and scalar product, Publ. Math. Debrecen, 67(2005), 20952.
  • [3] Asanov, G. S., Finsleroid Finsler spaces of positive-definite and relativistic type, Rep. Math. Phys., 58(2006), 275-300.
  • [4] Bao, D., Chern, S. S. and Shen, Z., An Introduction to Riemann-Finsler Geometry, Springer, Berlin, 2000.
  • [5] Chern, S. S. and Shen, Z., Riemann-Finsler Geometry, World Scientific, Nankai Tracts in Mathematics, Vol. 6, 2005.
  • [6] Deng, S. and Hou, Z., Invariant Randers Metrics on Homogeneous Riemannian Manifolds, J. Phys. A: Math. Gen., 37(2004), 4353-4360.
  • [7] Kowalski, O. and Vanhecke, L., Riemannian manifolds with homogeneous geodesics, Boll. Unione. Mat. Ital., 5(1991), 189246.
  • [8] Latifi, D., Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys., 57(2007), 1421-1433.
  • [9] Latifi D. and Razavi, A., Bi-invariant Finsler Metrics on Lie Groups, Australian Journal of Basic and Applied Sciences, 5(2011), no. 12, 507-511.
  • [10] Latifi, D., Bi-invariant Randers metrics on Lie groups, Publ. Math. Debrecen, 76(2010), no. 1-2, 219-226.
  • [11] Matsumoto, M., Theory of Finsler spaces with (α, β)−metric, Rep. Math. Phys., 31(1992), 43-83.
  • [12] Salimi Moghaddam, H. R., The flag curvature of invariant (α, β)-metrics of type (α+ β )^2/α J. Phys. A: Math. Theor., 41(2008), 275206 (6pp).
  • [13] Shen, Z., Lectures on Finsler Geometry, World Scienti c, 2001.
There are 13 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

M. Parhızkar This is me

H. R. Salimi Moghaddam

Publication Date October 30, 2013
Published in Issue Year 2013 Volume: 6 Issue: 2

Cite

APA Parhızkar, M., & Moghaddam, H. R. S. (2013). GEODESIC VECTOR FIELDS OF INVARIANT (α, β)-METRICS ON HOMOGENEOUS SPACES. International Electronic Journal of Geometry, 6(2), 39-44. https://izlik.org/JA74MY46GG
AMA 1.Parhızkar M, Moghaddam HRS. GEODESIC VECTOR FIELDS OF INVARIANT (α, β)-METRICS ON HOMOGENEOUS SPACES. Int. Electron. J. Geom. 2013;6(2):39-44. https://izlik.org/JA74MY46GG
Chicago Parhızkar, M., and H. R. Salimi Moghaddam. 2013. “GEODESIC VECTOR FIELDS OF INVARIANT (α, β)-METRICS ON HOMOGENEOUS SPACES”. International Electronic Journal of Geometry 6 (2): 39-44. https://izlik.org/JA74MY46GG.
EndNote Parhızkar M, Moghaddam HRS (October 1, 2013) GEODESIC VECTOR FIELDS OF INVARIANT (α, β)-METRICS ON HOMOGENEOUS SPACES. International Electronic Journal of Geometry 6 2 39–44.
IEEE [1]M. Parhızkar and H. R. S. Moghaddam, “GEODESIC VECTOR FIELDS OF INVARIANT (α, β)-METRICS ON HOMOGENEOUS SPACES”, Int. Electron. J. Geom., vol. 6, no. 2, pp. 39–44, Oct. 2013, [Online]. Available: https://izlik.org/JA74MY46GG
ISNAD Parhızkar, M. - Moghaddam, H. R. Salimi. “GEODESIC VECTOR FIELDS OF INVARIANT (α, β)-METRICS ON HOMOGENEOUS SPACES”. International Electronic Journal of Geometry 6/2 (October 1, 2013): 39-44. https://izlik.org/JA74MY46GG.
JAMA 1.Parhızkar M, Moghaddam HRS. GEODESIC VECTOR FIELDS OF INVARIANT (α, β)-METRICS ON HOMOGENEOUS SPACES. Int. Electron. J. Geom. 2013;6:39–44.
MLA Parhızkar, M., and H. R. Salimi Moghaddam. “GEODESIC VECTOR FIELDS OF INVARIANT (α, β)-METRICS ON HOMOGENEOUS SPACES”. International Electronic Journal of Geometry, vol. 6, no. 2, Oct. 2013, pp. 39-44, https://izlik.org/JA74MY46GG.
Vancouver 1.Parhızkar M, Moghaddam HRS. GEODESIC VECTOR FIELDS OF INVARIANT (α, β)-METRICS ON HOMOGENEOUS SPACES. Int. Electron. J. Geom. [Internet]. 2013 Oct. 1;6(2):39-44. Available from: https://izlik.org/JA74MY46GG