[1] Abbassi, M. T. K., Yampolsky, A., Transverse totally geodesic submanifolds of the tangent
bundle. Publ. Math. Debrecen 64/1-2 (2004),
129-154.
[2] Abbassi, M. T. K., Sarih, Maâti, On natural metrics on tangent bundles of Riemannian
manifolds. Arch. Math. (Brno) 41 (2005), no. 1, 71–92.
[3] Abbassi, M. T. K., Sarih, Maâti, On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian
manifolds. Differential Geom. Appl. 22 (2005), no. 1, 19–47.
[4] Abbassi, M. T. K., Métriques Naturelles Riemanniennes sur la Fibré tangent une
variété Riemannienne, Editions Universitaires Européénnes, Saarbrücken, Germany, 2012.
[5] Degla, S., Ezin, J. P., Todjihounde, L., On g-natural metrics of constant sectional curvature
on tangent bundles. Int. Electronic J. Geom. 2(1) (2009), p. 74-94.
[6] Deshmukh S., Al-Odan, H., Shaman, T. A., Tangent bundle of the hypersurfaces in a Euclidean
space. Acta Math. Acad. Pedagog. Nyíregyháziensis 23(1) (2007),71-87.
[7] Dombrowski, P., On the Geometry of Tangent Bundle. J. Reine Angew. Math. 210 (1962), p. 73-88.
[8] Ewert-Krzemieniewski, S., On a classification of Killing vector fields on a tangent bundle
with g-natural metric. arXiv:1305:3817v1.
[9] Ewert-Krzemieniewski, S., On a Killing vector fields on a tangent bundle with g-natural metric
Part I. Note Mat. 34 no. 2, (2014), 107-133.
[10] Ewert-Krzemieniewski, S., Totally geodesic submanifolds in tangent bundle with g-natural metric. Int. J. Geom. Methods Mod. Phys. 11
(2014), no. 9, 1460033 (9 pages).
[11] Ewert-Krzemieniewski, S., On a class of submanifolds in tangent bundle with g-natural metric.
arXiv:1411.3274.
[12] Ewert-Krzemieniewski, S., On a class of submanifolds in a tangent bundle with a g-natural
metric. Coll. Math., 150 no.1, (2017), 121-133.
[13] Kowalski, O., Sekizawa, M., Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles, A classification.
Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1–29.
[14] Yano, K., Kon, M., Structures on Manifolds. World Scientific, 1984.
[15] Yano, K., Ishihara, S., Tangent and cotangent bundles. Marcel Dekker, Inc. New York, 1973.
[16] Yano, K., Submanifolds with parallel mean curvature vector. J. Diff. Geom. 6 (1971), 95-118.
[1] Abbassi, M. T. K., Yampolsky, A., Transverse totally geodesic submanifolds of the tangent
bundle. Publ. Math. Debrecen 64/1-2 (2004),
129-154.
[2] Abbassi, M. T. K., Sarih, Maâti, On natural metrics on tangent bundles of Riemannian
manifolds. Arch. Math. (Brno) 41 (2005), no. 1, 71–92.
[3] Abbassi, M. T. K., Sarih, Maâti, On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian
manifolds. Differential Geom. Appl. 22 (2005), no. 1, 19–47.
[4] Abbassi, M. T. K., Métriques Naturelles Riemanniennes sur la Fibré tangent une
variété Riemannienne, Editions Universitaires Européénnes, Saarbrücken, Germany, 2012.
[5] Degla, S., Ezin, J. P., Todjihounde, L., On g-natural metrics of constant sectional curvature
on tangent bundles. Int. Electronic J. Geom. 2(1) (2009), p. 74-94.
[6] Deshmukh S., Al-Odan, H., Shaman, T. A., Tangent bundle of the hypersurfaces in a Euclidean
space. Acta Math. Acad. Pedagog. Nyíregyháziensis 23(1) (2007),71-87.
[7] Dombrowski, P., On the Geometry of Tangent Bundle. J. Reine Angew. Math. 210 (1962), p. 73-88.
[8] Ewert-Krzemieniewski, S., On a classification of Killing vector fields on a tangent bundle
with g-natural metric. arXiv:1305:3817v1.
[9] Ewert-Krzemieniewski, S., On a Killing vector fields on a tangent bundle with g-natural metric
Part I. Note Mat. 34 no. 2, (2014), 107-133.
[10] Ewert-Krzemieniewski, S., Totally geodesic submanifolds in tangent bundle with g-natural metric. Int. J. Geom. Methods Mod. Phys. 11
(2014), no. 9, 1460033 (9 pages).
[11] Ewert-Krzemieniewski, S., On a class of submanifolds in tangent bundle with g-natural metric.
arXiv:1411.3274.
[12] Ewert-Krzemieniewski, S., On a class of submanifolds in a tangent bundle with a g-natural
metric. Coll. Math., 150 no.1, (2017), 121-133.
[13] Kowalski, O., Sekizawa, M., Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles, A classification.
Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1–29.
[14] Yano, K., Kon, M., Structures on Manifolds. World Scientific, 1984.
[15] Yano, K., Ishihara, S., Tangent and cotangent bundles. Marcel Dekker, Inc. New York, 1973.
[16] Yano, K., Submanifolds with parallel mean curvature vector. J. Diff. Geom. 6 (1971), 95-118.
Ewert-krzemieniewski, S. (2019). On a Class of Submanifolds in a Tangent Bundle with a g-Natural Metric - Normal lift. International Electronic Journal of Geometry, 12(2), 144-156. https://doi.org/10.36890/iejg.628065
AMA
Ewert-krzemieniewski S. On a Class of Submanifolds in a Tangent Bundle with a g-Natural Metric - Normal lift. Int. Electron. J. Geom. October 2019;12(2):144-156. doi:10.36890/iejg.628065
Chicago
Ewert-krzemieniewski, Stanisław. “On a Class of Submanifolds in a Tangent Bundle With a G-Natural Metric - Normal Lift”. International Electronic Journal of Geometry 12, no. 2 (October 2019): 144-56. https://doi.org/10.36890/iejg.628065.
EndNote
Ewert-krzemieniewski S (October 1, 2019) On a Class of Submanifolds in a Tangent Bundle with a g-Natural Metric - Normal lift. International Electronic Journal of Geometry 12 2 144–156.
IEEE
S. Ewert-krzemieniewski, “On a Class of Submanifolds in a Tangent Bundle with a g-Natural Metric - Normal lift”, Int. Electron. J. Geom., vol. 12, no. 2, pp. 144–156, 2019, doi: 10.36890/iejg.628065.
ISNAD
Ewert-krzemieniewski, Stanisław. “On a Class of Submanifolds in a Tangent Bundle With a G-Natural Metric - Normal Lift”. International Electronic Journal of Geometry 12/2 (October 2019), 144-156. https://doi.org/10.36890/iejg.628065.
JAMA
Ewert-krzemieniewski S. On a Class of Submanifolds in a Tangent Bundle with a g-Natural Metric - Normal lift. Int. Electron. J. Geom. 2019;12:144–156.
MLA
Ewert-krzemieniewski, Stanisław. “On a Class of Submanifolds in a Tangent Bundle With a G-Natural Metric - Normal Lift”. International Electronic Journal of Geometry, vol. 12, no. 2, 2019, pp. 144-56, doi:10.36890/iejg.628065.
Vancouver
Ewert-krzemieniewski S. On a Class of Submanifolds in a Tangent Bundle with a g-Natural Metric - Normal lift. Int. Electron. J. Geom. 2019;12(2):144-56.