[1] Bejan, C. L. and Crasmareanu, M., Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry. Ann.
Global Anal. Geom. 46(2) (2014), 117–127.
[2] Blair, D. E., The theory of quasi-Sasakian structures. J. Differential Geom. 1 (1967), 331–345.
[3] Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics Vol. 203, Birkhäuser. Boston 2002.
[4] Cappelletti-Montano, B., Küpeli Erken, I. and Murathan, C., Nullity conditions in paracontact geometry. Diff. Geom. Appl. 30 (2012),
665–693.
[5] Dacko, P., On almost para-cosymplectic manifolds. Tsukuba J. Math. 28 (2004), 193–213.
[6] Erdem, S., On almost (para)contact (hyperbolic) metric manifolds and harmonicity of (φ,φ')-holomorphic maps between them. Houston
J. Math. 28 (2002), 21–45.
[1] Bejan, C. L. and Crasmareanu, M., Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry. Ann.
Global Anal. Geom. 46(2) (2014), 117–127.
[2] Blair, D. E., The theory of quasi-Sasakian structures. J. Differential Geom. 1 (1967), 331–345.
[3] Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics Vol. 203, Birkhäuser. Boston 2002.
[4] Cappelletti-Montano, B., Küpeli Erken, I. and Murathan, C., Nullity conditions in paracontact geometry. Diff. Geom. Appl. 30 (2012),
665–693.
[5] Dacko, P., On almost para-cosymplectic manifolds. Tsukuba J. Math. 28 (2004), 193–213.
[6] Erdem, S., On almost (para)contact (hyperbolic) metric manifolds and harmonicity of (φ,φ')-holomorphic maps between them. Houston
J. Math. 28 (2002), 21–45.
Erken, İ. K. (2019). Curvature Properties of Quasi-Para-Sasakian Manifolds. International Electronic Journal of Geometry, 12(2), 210-217. https://doi.org/10.36890/iejg.628085
AMA
Erken İK. Curvature Properties of Quasi-Para-Sasakian Manifolds. Int. Electron. J. Geom. October 2019;12(2):210-217. doi:10.36890/iejg.628085
Chicago
Erken, İ. Küpeli. “Curvature Properties of Quasi-Para-Sasakian Manifolds”. International Electronic Journal of Geometry 12, no. 2 (October 2019): 210-17. https://doi.org/10.36890/iejg.628085.
EndNote
Erken İK (October 1, 2019) Curvature Properties of Quasi-Para-Sasakian Manifolds. International Electronic Journal of Geometry 12 2 210–217.
IEEE
İ. K. Erken, “Curvature Properties of Quasi-Para-Sasakian Manifolds”, Int. Electron. J. Geom., vol. 12, no. 2, pp. 210–217, 2019, doi: 10.36890/iejg.628085.
ISNAD
Erken, İ. Küpeli. “Curvature Properties of Quasi-Para-Sasakian Manifolds”. International Electronic Journal of Geometry 12/2 (October 2019), 210-217. https://doi.org/10.36890/iejg.628085.
JAMA
Erken İK. Curvature Properties of Quasi-Para-Sasakian Manifolds. Int. Electron. J. Geom. 2019;12:210–217.
MLA
Erken, İ. Küpeli. “Curvature Properties of Quasi-Para-Sasakian Manifolds”. International Electronic Journal of Geometry, vol. 12, no. 2, 2019, pp. 210-7, doi:10.36890/iejg.628085.
Vancouver
Erken İK. Curvature Properties of Quasi-Para-Sasakian Manifolds. Int. Electron. J. Geom. 2019;12(2):210-7.