[1] Bejancu, A.: Groupes de Lie-Banach et espaces localement symétriques. An. Stiint. Univ. Al. I. Cuza Iasi, Sect. Ia. 18, 401–405 (1972).
[2] Bejancu, A.: Sur l’existence d’une structure de groupe de Lie-Banach local. C. R. Acad. Sci., Paris, Sér. A. 276, 61–64 (1973).
[3] Bos, L., Slawinski, M. A.: Proof of validity of first-order seismic traveltime estimates. GEM. Int. J. Geomath. 2(2), 255-263 (2011).
[4] Crasmareanu, M.: Adapted metrics and Webster curvature on three classes of 3-dimensional geometries. Int. Electron. J. Geom. 7(2), 37–46 (2014).
[5] Crasmareanu, M.: A complex approach to the gradient-type deformation of conics. Bull. Transilv. Univ. Bra¸sov, Ser. III, Math. Inform. Phys.
10(59), 59–62 (2017).
[6] Crasmareanu, M.: Conics from symmetric Pythagorean triple preserving matrices. Int. Electron. J. Geom. 12(1), 85–92 (2019).
[7] Crasmareanu, M.: Clifford product of cycles in EPH geometries and EPH-square of elliptic curves. An. Stiint. Univ. Al. I. Cuza Iasi Mat. 66(1),
147–160 (2020).
[8] Crasmareanu, M.: Magic conics, their integer points and complementary ellipses. An. Stiint. Univ. Al. I. Cuza Iasi Mat. in press.
[9] Crasmareanu, M., Plugariu, A.: New aspects on square roots of a real 2 x 2 matrix and their geometric applications. Math. Sci. Appl. E-Notes
6(1), 37–42 (2018).
[10] González, M. O.: Classical complex analysis. Monographs and Textbooks in Pure and Applied Mathematics, 151. Marcel Dekker, Inc.,
New York, 1992.
[11] Jensen, G. R., Musso, E., Nicolodi L.: Surfaces in classical geometries. A treatment by moving frames. Universitext. Springer, Cham, 2016.
[12] Lee, J. M.: Introduction to Riemannian manifolds. Second edition. Graduate Texts in Mathematics, 176. Springer, Cham, 2018.
[13] Nicolaescu, L. I.: Morse theory on Grassmannians. An. ¸Stiin¸t. Univ. Al. I. Cuza Ia¸si, Mat. 40(1), 25–46 (1994).
[14] Nomizu, K., Pinkall, U.: Lorentzian geometry for 2 x 2 real matrices. Linear Multilinear Algebra 28(4), 207–212 (1990).
[15] Özdemir, F., Crasmareanu, M.: Geometrical objects associated to a substructure. Turk. J. Math. 35(4), 717–728 (2011).
[16] Rosenberg, S.: The Laplacian on a Riemannian manifold. An introduction to analysis on manifolds. London Mathematical Society Student
Texts, 31. Cambridge University Press, Cambridge, 1997.
[17] Wilkinson, A.: What are Lyapunov exponents, and why are they interesting? Bull. Am. Math. Soc. New Ser. 54(1) 79–105 (2017).
The Determinant Inner Product and the Heisenberg Product of $Sym(2)$
The aim of this work is to introduce and study the nondegenerate inner product $<\cdot , \cdot >_{det}$ induced by the determinant map on the space $Sym(2)$ of symmetric $2\times 2$ real matrices. This symmetric bilinear form of index $2$ defines a rational symmetric function on the pairs of rays in the plane and an associated function on the $2$-torus can be expressed with the usual Hopf bundle projection $S^3\rightarrow S^2(\frac{1}{2})$. Also, the product $<\cdot , \cdot >_{det}$ is treated with complex numbers by using the Hopf invariant map of $Sym(2)$ and this complex approach yields a Heisenberg product on $Sym(2)$. Moreover, the quadratic equation of critical points for a rational Morse function of height type generates a cosymplectic structure on $Sym(2)$ with the unitary matrix as associated Reeb vector and with the Reeb $1$-form being half of the trace map.
[1] Bejancu, A.: Groupes de Lie-Banach et espaces localement symétriques. An. Stiint. Univ. Al. I. Cuza Iasi, Sect. Ia. 18, 401–405 (1972).
[2] Bejancu, A.: Sur l’existence d’une structure de groupe de Lie-Banach local. C. R. Acad. Sci., Paris, Sér. A. 276, 61–64 (1973).
[3] Bos, L., Slawinski, M. A.: Proof of validity of first-order seismic traveltime estimates. GEM. Int. J. Geomath. 2(2), 255-263 (2011).
[4] Crasmareanu, M.: Adapted metrics and Webster curvature on three classes of 3-dimensional geometries. Int. Electron. J. Geom. 7(2), 37–46 (2014).
[5] Crasmareanu, M.: A complex approach to the gradient-type deformation of conics. Bull. Transilv. Univ. Bra¸sov, Ser. III, Math. Inform. Phys.
10(59), 59–62 (2017).
[6] Crasmareanu, M.: Conics from symmetric Pythagorean triple preserving matrices. Int. Electron. J. Geom. 12(1), 85–92 (2019).
[7] Crasmareanu, M.: Clifford product of cycles in EPH geometries and EPH-square of elliptic curves. An. Stiint. Univ. Al. I. Cuza Iasi Mat. 66(1),
147–160 (2020).
[8] Crasmareanu, M.: Magic conics, their integer points and complementary ellipses. An. Stiint. Univ. Al. I. Cuza Iasi Mat. in press.
[9] Crasmareanu, M., Plugariu, A.: New aspects on square roots of a real 2 x 2 matrix and their geometric applications. Math. Sci. Appl. E-Notes
6(1), 37–42 (2018).
[10] González, M. O.: Classical complex analysis. Monographs and Textbooks in Pure and Applied Mathematics, 151. Marcel Dekker, Inc.,
New York, 1992.
[11] Jensen, G. R., Musso, E., Nicolodi L.: Surfaces in classical geometries. A treatment by moving frames. Universitext. Springer, Cham, 2016.
[12] Lee, J. M.: Introduction to Riemannian manifolds. Second edition. Graduate Texts in Mathematics, 176. Springer, Cham, 2018.
[13] Nicolaescu, L. I.: Morse theory on Grassmannians. An. ¸Stiin¸t. Univ. Al. I. Cuza Ia¸si, Mat. 40(1), 25–46 (1994).
[14] Nomizu, K., Pinkall, U.: Lorentzian geometry for 2 x 2 real matrices. Linear Multilinear Algebra 28(4), 207–212 (1990).
[15] Özdemir, F., Crasmareanu, M.: Geometrical objects associated to a substructure. Turk. J. Math. 35(4), 717–728 (2011).
[16] Rosenberg, S.: The Laplacian on a Riemannian manifold. An introduction to analysis on manifolds. London Mathematical Society Student
Texts, 31. Cambridge University Press, Cambridge, 1997.
[17] Wilkinson, A.: What are Lyapunov exponents, and why are they interesting? Bull. Am. Math. Soc. New Ser. 54(1) 79–105 (2017).
Crasmareanu, M. (2021). The Determinant Inner Product and the Heisenberg Product of $Sym(2)$. International Electronic Journal of Geometry, 14(1), 145-156. https://doi.org/10.36890/iejg.754557
AMA
Crasmareanu M. The Determinant Inner Product and the Heisenberg Product of $Sym(2)$. Int. Electron. J. Geom. April 2021;14(1):145-156. doi:10.36890/iejg.754557
Chicago
Crasmareanu, Mircea. “The Determinant Inner Product and the Heisenberg Product of $Sym(2)$”. International Electronic Journal of Geometry 14, no. 1 (April 2021): 145-56. https://doi.org/10.36890/iejg.754557.
EndNote
Crasmareanu M (April 1, 2021) The Determinant Inner Product and the Heisenberg Product of $Sym(2)$. International Electronic Journal of Geometry 14 1 145–156.
IEEE
M. Crasmareanu, “The Determinant Inner Product and the Heisenberg Product of $Sym(2)$”, Int. Electron. J. Geom., vol. 14, no. 1, pp. 145–156, 2021, doi: 10.36890/iejg.754557.
ISNAD
Crasmareanu, Mircea. “The Determinant Inner Product and the Heisenberg Product of $Sym(2)$”. International Electronic Journal of Geometry 14/1 (April 2021), 145-156. https://doi.org/10.36890/iejg.754557.
JAMA
Crasmareanu M. The Determinant Inner Product and the Heisenberg Product of $Sym(2)$. Int. Electron. J. Geom. 2021;14:145–156.
MLA
Crasmareanu, Mircea. “The Determinant Inner Product and the Heisenberg Product of $Sym(2)$”. International Electronic Journal of Geometry, vol. 14, no. 1, 2021, pp. 145-56, doi:10.36890/iejg.754557.
Vancouver
Crasmareanu M. The Determinant Inner Product and the Heisenberg Product of $Sym(2)$. Int. Electron. J. Geom. 2021;14(1):145-56.