Research Article
BibTex RIS Cite
Year 2018, Volume: 11 Issue: 1, 48 - 51, 30.04.2018

Abstract

References

  • [1] Bonnet, Ossian: Sur quelque propriétés des lignes géodésiques, Comptes rendus de l’Academie des Sciences, 11 (1855), 1311–1313.
  • [2] Calabi, Eugenio: On Ricci curvatures and geodesics, Duke Math. J., 34 (1967), 667–676.
  • [3] Casorati, Felice, Mesure de la courbure des surfaces suivant l’idée commune. Ses rapports avec les mesures de courbure gaussienne et moyenne, Acta Math. 14 (1) (1890), 95–110.
  • [4] Chen, Bang-Yen, Geometry of submanifolds, M. Dekker, New York, 1973.
  • [5] Chen, Bang-Yen, Geometry of submanifolds and its applications, Science University of Tokyo, 1981.
  • [6] Chen, Bang-Yen, Pseudo-Riemannian submanifolds, -invariants and Applications, World Scientific, 2011.
  • [7] doCarmo, Manfredo P., Riemannian Geometry, Birkhäuser, 1992.
  • [8] Galloway, Gregory J., A Generalization of Myers Theorem and an application to relativistic cosmology, J. Diff. Geom., 14 (1979), 105–116.
  • [9] Myers, S. B., Riemmannian manifolds with positive curvature, Duke Math. J., vol. 8 (1941), 401–404.

A Geometric Interpretation of Cauchy-Schwarz Inequality in Terms of Casorati Curvature

Year 2018, Volume: 11 Issue: 1, 48 - 51, 30.04.2018

Abstract

In a visionary short paper published in 1855, Ossian Bonnet derived a theorem relating prescribed
curvature conditions to the admissible maximal length of geodesics on a surface. Bonnet’s work
opened the pathway for the quest of further connections between curvature conditions and
other geometric properties of surfaces, hypersurfaces or Riemannian manifolds. The classical
Myers’ Theorem in Riemannian geometry provides sufficient conditions for the compactness
of a Riemannian manifold in terms of Ricci curvature. In the present work, we are proving a
theorem involving sufficient conditions for a smooth hypersurface in Euclidean ambient space
to be convex, and the argument relies on an application of Cauchy-Schwarz inequality. This
statement represents, in consequence, a geometric interpretation of Cauchy-Schwarz inequality.
The curvature conditions are prescribed in terms of Casorati curvature.

References

  • [1] Bonnet, Ossian: Sur quelque propriétés des lignes géodésiques, Comptes rendus de l’Academie des Sciences, 11 (1855), 1311–1313.
  • [2] Calabi, Eugenio: On Ricci curvatures and geodesics, Duke Math. J., 34 (1967), 667–676.
  • [3] Casorati, Felice, Mesure de la courbure des surfaces suivant l’idée commune. Ses rapports avec les mesures de courbure gaussienne et moyenne, Acta Math. 14 (1) (1890), 95–110.
  • [4] Chen, Bang-Yen, Geometry of submanifolds, M. Dekker, New York, 1973.
  • [5] Chen, Bang-Yen, Geometry of submanifolds and its applications, Science University of Tokyo, 1981.
  • [6] Chen, Bang-Yen, Pseudo-Riemannian submanifolds, -invariants and Applications, World Scientific, 2011.
  • [7] doCarmo, Manfredo P., Riemannian Geometry, Birkhäuser, 1992.
  • [8] Galloway, Gregory J., A Generalization of Myers Theorem and an application to relativistic cosmology, J. Diff. Geom., 14 (1979), 105–116.
  • [9] Myers, S. B., Riemmannian manifolds with positive curvature, Duke Math. J., vol. 8 (1941), 401–404.
There are 9 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Nicholas D. Brubaker This is me

Bogdan D. Suceava

Publication Date April 30, 2018
Published in Issue Year 2018 Volume: 11 Issue: 1

Cite

APA Brubaker, N. D., & Suceava, B. D. (2018). A Geometric Interpretation of Cauchy-Schwarz Inequality in Terms of Casorati Curvature. International Electronic Journal of Geometry, 11(1), 48-51.
AMA Brubaker ND, Suceava BD. A Geometric Interpretation of Cauchy-Schwarz Inequality in Terms of Casorati Curvature. Int. Electron. J. Geom. April 2018;11(1):48-51.
Chicago Brubaker, Nicholas D., and Bogdan D. Suceava. “A Geometric Interpretation of Cauchy-Schwarz Inequality in Terms of Casorati Curvature”. International Electronic Journal of Geometry 11, no. 1 (April 2018): 48-51.
EndNote Brubaker ND, Suceava BD (April 1, 2018) A Geometric Interpretation of Cauchy-Schwarz Inequality in Terms of Casorati Curvature. International Electronic Journal of Geometry 11 1 48–51.
IEEE N. D. Brubaker and B. D. Suceava, “A Geometric Interpretation of Cauchy-Schwarz Inequality in Terms of Casorati Curvature”, Int. Electron. J. Geom., vol. 11, no. 1, pp. 48–51, 2018.
ISNAD Brubaker, Nicholas D. - Suceava, Bogdan D. “A Geometric Interpretation of Cauchy-Schwarz Inequality in Terms of Casorati Curvature”. International Electronic Journal of Geometry 11/1 (April 2018), 48-51.
JAMA Brubaker ND, Suceava BD. A Geometric Interpretation of Cauchy-Schwarz Inequality in Terms of Casorati Curvature. Int. Electron. J. Geom. 2018;11:48–51.
MLA Brubaker, Nicholas D. and Bogdan D. Suceava. “A Geometric Interpretation of Cauchy-Schwarz Inequality in Terms of Casorati Curvature”. International Electronic Journal of Geometry, vol. 11, no. 1, 2018, pp. 48-51.
Vancouver Brubaker ND, Suceava BD. A Geometric Interpretation of Cauchy-Schwarz Inequality in Terms of Casorati Curvature. Int. Electron. J. Geom. 2018;11(1):48-51.