Research Article
BibTex RIS Cite
Year 2008, Volume: 1 Issue: 2, 1 - 10, 30.11.2008

Abstract

References

  • [1] Bott, R. and Tu, L. W., Differential Forms in Algebraic Topology, Springer - Verlag New York Heidelberg Berlin, 1982.
  • [2] Kera, S., On the permutation products of manifolds, Contrib. to Algebra & Geometry, 42(2001), 547 - 555.
  • [3] Kera, S. and Trencevski, K., On some characteristic subgroups of the group of upper trian- gular matrices, Matemati·cki Bilten, 23(1999), 59 - 66.
  • [4] Smith, P. A., The topology of involutions, Proc. Nat. Acad. Sci., 19(1933), 612 - 618.
  • [5] Trencevski, K., Some Examples of Fully Commutative Vector - Valued Groups, Contributions - Sect. Math. Techn. Sci., IX(1988), no.1-2, 27 -37.
  • [6] Trencevski, K., Generalization of the Grassmann manifolds, in: Global Analysis, Differential Geometry and Lie Algebras, BSG Proceedings 4, (Grigorios Tsagas, ed.), pp. 124 -132, Thessaloniki, 1998, Geometry Balkan Press, Bucharest.
  • [7] Trencevski, K., Permutation products of 1-dimensional complex manifolds, Contributions - Sect. Math. Techn. Sci., XX(1999), no.1-2, 29 - 37.
  • [8] Trencevski, K. and Dimovski, D., Complex Commutative Vector Valued Groups, Macedonian Acad. Sci. and Arts, Skopje, 1992.
  • [9] Trencevski, K. and Dimovski, D., On the affine and projective commutative (m+k,m)-groups, J. Algebra, 240(2001), 338 - 365.
  • [10] Trencevski, K. and Kera, S., Cell decomposition of the full flag manifolds, in: Proc. of the 10th Congress of Yugoslav Mathematicians, pp. 211 - 216, Belgrade 2001.
  • [11] Trencevski, K. and Kera, S., One conjecture concerning the permutation products on mani- folds, Math. Balkanica, 12(1998), 425 - 429.
  • [12] Wagner, C. H., Symmetric, cyclic and permutation products of manifolds, Dissert. Math. (Rozravy math.), 182(1980), 3 - 48.

Canonical forms of matrices determining analytical manifolds

Year 2008, Volume: 1 Issue: 2, 1 - 10, 30.11.2008

Abstract


References

  • [1] Bott, R. and Tu, L. W., Differential Forms in Algebraic Topology, Springer - Verlag New York Heidelberg Berlin, 1982.
  • [2] Kera, S., On the permutation products of manifolds, Contrib. to Algebra & Geometry, 42(2001), 547 - 555.
  • [3] Kera, S. and Trencevski, K., On some characteristic subgroups of the group of upper trian- gular matrices, Matemati·cki Bilten, 23(1999), 59 - 66.
  • [4] Smith, P. A., The topology of involutions, Proc. Nat. Acad. Sci., 19(1933), 612 - 618.
  • [5] Trencevski, K., Some Examples of Fully Commutative Vector - Valued Groups, Contributions - Sect. Math. Techn. Sci., IX(1988), no.1-2, 27 -37.
  • [6] Trencevski, K., Generalization of the Grassmann manifolds, in: Global Analysis, Differential Geometry and Lie Algebras, BSG Proceedings 4, (Grigorios Tsagas, ed.), pp. 124 -132, Thessaloniki, 1998, Geometry Balkan Press, Bucharest.
  • [7] Trencevski, K., Permutation products of 1-dimensional complex manifolds, Contributions - Sect. Math. Techn. Sci., XX(1999), no.1-2, 29 - 37.
  • [8] Trencevski, K. and Dimovski, D., Complex Commutative Vector Valued Groups, Macedonian Acad. Sci. and Arts, Skopje, 1992.
  • [9] Trencevski, K. and Dimovski, D., On the affine and projective commutative (m+k,m)-groups, J. Algebra, 240(2001), 338 - 365.
  • [10] Trencevski, K. and Kera, S., Cell decomposition of the full flag manifolds, in: Proc. of the 10th Congress of Yugoslav Mathematicians, pp. 211 - 216, Belgrade 2001.
  • [11] Trencevski, K. and Kera, S., One conjecture concerning the permutation products on mani- folds, Math. Balkanica, 12(1998), 425 - 429.
  • [12] Wagner, C. H., Symmetric, cyclic and permutation products of manifolds, Dissert. Math. (Rozravy math.), 182(1980), 3 - 48.
There are 12 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Kostadin Trencevski This is me

Samet Kera This is me

Publication Date November 30, 2008
Published in Issue Year 2008 Volume: 1 Issue: 2

Cite

APA Trencevski, K., & Kera, S. (2008). Canonical forms of matrices determining analytical manifolds. International Electronic Journal of Geometry, 1(2), 1-10.
AMA Trencevski K, Kera S. Canonical forms of matrices determining analytical manifolds. Int. Electron. J. Geom. November 2008;1(2):1-10.
Chicago Trencevski, Kostadin, and Samet Kera. “Canonical Forms of Matrices Determining Analytical Manifolds”. International Electronic Journal of Geometry 1, no. 2 (November 2008): 1-10.
EndNote Trencevski K, Kera S (November 1, 2008) Canonical forms of matrices determining analytical manifolds. International Electronic Journal of Geometry 1 2 1–10.
IEEE K. Trencevski and S. Kera, “Canonical forms of matrices determining analytical manifolds”, Int. Electron. J. Geom., vol. 1, no. 2, pp. 1–10, 2008.
ISNAD Trencevski, Kostadin - Kera, Samet. “Canonical Forms of Matrices Determining Analytical Manifolds”. International Electronic Journal of Geometry 1/2 (November 2008), 1-10.
JAMA Trencevski K, Kera S. Canonical forms of matrices determining analytical manifolds. Int. Electron. J. Geom. 2008;1:1–10.
MLA Trencevski, Kostadin and Samet Kera. “Canonical Forms of Matrices Determining Analytical Manifolds”. International Electronic Journal of Geometry, vol. 1, no. 2, 2008, pp. 1-10.
Vancouver Trencevski K, Kera S. Canonical forms of matrices determining analytical manifolds. Int. Electron. J. Geom. 2008;1(2):1-10.