[1] Bott, R. and Tu, L. W., Differential Forms in Algebraic Topology, Springer - Verlag New
York Heidelberg Berlin, 1982.
[2] Kera, S., On the permutation products of manifolds, Contrib. to Algebra & Geometry,
42(2001), 547 - 555.
[3] Kera, S. and Trencevski, K., On some characteristic subgroups of the group of upper trian-
gular matrices, Matemati·cki Bilten, 23(1999), 59 - 66.
[4] Smith, P. A., The topology of involutions, Proc. Nat. Acad. Sci., 19(1933), 612 - 618.
[5] Trencevski, K., Some Examples of Fully Commutative Vector - Valued Groups, Contributions
- Sect. Math. Techn. Sci., IX(1988), no.1-2, 27 -37.
[6] Trencevski, K., Generalization of the Grassmann manifolds, in: Global Analysis, Differential
Geometry and Lie Algebras, BSG Proceedings 4, (Grigorios Tsagas, ed.), pp. 124 -132,
Thessaloniki, 1998, Geometry Balkan Press, Bucharest.
[7] Trencevski, K., Permutation products of 1-dimensional complex manifolds, Contributions -
Sect. Math. Techn. Sci., XX(1999), no.1-2, 29 - 37.
[8] Trencevski, K. and Dimovski, D., Complex Commutative Vector Valued Groups, Macedonian
Acad. Sci. and Arts, Skopje, 1992.
[9] Trencevski, K. and Dimovski, D., On the affine and projective commutative (m+k,m)-groups,
J. Algebra, 240(2001), 338 - 365.
[10] Trencevski, K. and Kera, S., Cell decomposition of the full flag manifolds, in: Proc. of the
10th Congress of Yugoslav Mathematicians, pp. 211 - 216, Belgrade 2001.
[11] Trencevski, K. and Kera, S., One conjecture concerning the permutation products on mani-
folds, Math. Balkanica, 12(1998), 425 - 429.
[12] Wagner, C. H., Symmetric, cyclic and permutation products of manifolds, Dissert. Math.
(Rozravy math.), 182(1980), 3 - 48.
Canonical forms of matrices determining analytical manifolds
[1] Bott, R. and Tu, L. W., Differential Forms in Algebraic Topology, Springer - Verlag New
York Heidelberg Berlin, 1982.
[2] Kera, S., On the permutation products of manifolds, Contrib. to Algebra & Geometry,
42(2001), 547 - 555.
[3] Kera, S. and Trencevski, K., On some characteristic subgroups of the group of upper trian-
gular matrices, Matemati·cki Bilten, 23(1999), 59 - 66.
[4] Smith, P. A., The topology of involutions, Proc. Nat. Acad. Sci., 19(1933), 612 - 618.
[5] Trencevski, K., Some Examples of Fully Commutative Vector - Valued Groups, Contributions
- Sect. Math. Techn. Sci., IX(1988), no.1-2, 27 -37.
[6] Trencevski, K., Generalization of the Grassmann manifolds, in: Global Analysis, Differential
Geometry and Lie Algebras, BSG Proceedings 4, (Grigorios Tsagas, ed.), pp. 124 -132,
Thessaloniki, 1998, Geometry Balkan Press, Bucharest.
[7] Trencevski, K., Permutation products of 1-dimensional complex manifolds, Contributions -
Sect. Math. Techn. Sci., XX(1999), no.1-2, 29 - 37.
[8] Trencevski, K. and Dimovski, D., Complex Commutative Vector Valued Groups, Macedonian
Acad. Sci. and Arts, Skopje, 1992.
[9] Trencevski, K. and Dimovski, D., On the affine and projective commutative (m+k,m)-groups,
J. Algebra, 240(2001), 338 - 365.
[10] Trencevski, K. and Kera, S., Cell decomposition of the full flag manifolds, in: Proc. of the
10th Congress of Yugoslav Mathematicians, pp. 211 - 216, Belgrade 2001.
[11] Trencevski, K. and Kera, S., One conjecture concerning the permutation products on mani-
folds, Math. Balkanica, 12(1998), 425 - 429.
[12] Wagner, C. H., Symmetric, cyclic and permutation products of manifolds, Dissert. Math.
(Rozravy math.), 182(1980), 3 - 48.
Trencevski, K., & Kera, S. (2008). Canonical forms of matrices determining analytical manifolds. International Electronic Journal of Geometry, 1(2), 1-10.
AMA
Trencevski K, Kera S. Canonical forms of matrices determining analytical manifolds. Int. Electron. J. Geom. November 2008;1(2):1-10.
Chicago
Trencevski, Kostadin, and Samet Kera. “Canonical Forms of Matrices Determining Analytical Manifolds”. International Electronic Journal of Geometry 1, no. 2 (November 2008): 1-10.
EndNote
Trencevski K, Kera S (November 1, 2008) Canonical forms of matrices determining analytical manifolds. International Electronic Journal of Geometry 1 2 1–10.
IEEE
K. Trencevski and S. Kera, “Canonical forms of matrices determining analytical manifolds”, Int. Electron. J. Geom., vol. 1, no. 2, pp. 1–10, 2008.
ISNAD
Trencevski, Kostadin - Kera, Samet. “Canonical Forms of Matrices Determining Analytical Manifolds”. International Electronic Journal of Geometry 1/2 (November 2008), 1-10.
JAMA
Trencevski K, Kera S. Canonical forms of matrices determining analytical manifolds. Int. Electron. J. Geom. 2008;1:1–10.
MLA
Trencevski, Kostadin and Samet Kera. “Canonical Forms of Matrices Determining Analytical Manifolds”. International Electronic Journal of Geometry, vol. 1, no. 2, 2008, pp. 1-10.
Vancouver
Trencevski K, Kera S. Canonical forms of matrices determining analytical manifolds. Int. Electron. J. Geom. 2008;1(2):1-10.