[1] Aydin, M. and Mihai, I., On certain surfaces in the isotropic 4-space. Math. Commun. 22 (2017), no.1, 41-51.
[2] Aydin, M. and Ogrenmis, O., Homothetical and translation hypersurfaces with constant curvature in the isotropic space. BSG Proceedings
23 (2016), 1-10.
[3] Aydin, M., A generalization of translation surfaces with constant curvature in the isotropic space. J. Geom. 107 (2016), no.3, 603-615.
[4] Baba-Hamed, Ch., Bekkar, M. and Zoubir, H., Translation surfaces in the three-dimensional Lorentz-Minkowski space satisfying 4ri =
iri. Int. J. Math. Anal. 4 (2010), no. 17, 797 - 808.
[5] Bekkar, M. and Senoussi, B., Translation surfaces in the 3-dimensional space satisfying 4II ri = iri. J. Geom. 103 (2012), no.3, 367-374.
[6] Bukcu, B., Yoon, D.W. and Karacan, M.K., Translation surfaces in the 3-dimensional simply isotropic space I13
satisfying 4IIIxi = ixi. Konuralp J. Math. 4 (2016), no. 1, 275-281.
[7] Cetin, M., Tuncer, Y. and Ekmekci, N., Translation surfaces in Euclidean 3-space. Int. J. Phys. Math. Sci. 2 (2011), 49-56.
[8] Chen, B.-Y., On submanifolds of finite type. Soochow J. Math. 9 (1983), 65-81.
[9] Chen, B.-Y., Total mean curvature and submanifolds of finite type. World Scientific. Singapor-New Jersey-London, 1984.
[10] Chen, B.-Y., Decu S. and Verstraelen, L., Notes on isotropic geometry of production models. Kragujevac J. Math. 38 (2014), no. 1, 23-33.
[11] Chen, B.-Y., Some open problems and conjectures on submanifolds of finite type: recent development. Tamkang. J. Math. 45 (2014), no.1,
87-108.
[12] Dillen, F., Verstraelen, L. and Zafindratafa, G., A generalization of the translation surfaces of Scherk. Differential Geometry in Honor of
Radu Rosca: Meeting on Pure and Applied Differential Geometry, Leuven, Belgium, 1989, KU Leuven, Departement Wiskunde (1991),
pp. 107–109.
[13] Karacan, M.K., Yoon, D.W. and Bukcu, B., Translation surfaces in the three dimensional simply isotropic space I13
. Int. J. Geom. Methods Mod. Phys. 13, 1650088 (2016) (9 pages) DOI: http://dx.doi.org/10.1142/S0219887816500882.
[14] Liu, H., Translation surfaces with constant mean curvature in 3-dimensional spaces. J. Geom. 64 (1999), no. 1-2, 141–149.
[15] Liu, H. and Yu, Y., Affine translation surfaces in Euclidean 3-space. In: Proceedings of the Japan Academy, Ser. A, Mathematical Sciences 89 Ser.
A (2013), 111–113.
[16] Liu, H., Jung, S.D., Affine translation surfaces with constant mean curvature in Euclidean 3-space. J. Geom. DOI 10.1007/s00022-016-0348-
9, in press.
[17] Lopez, R. and Moruz, M., Translation and homothetical surfaces in Euclidean space with constant curvature. J. Korean Math. Soc. 52 (2015),
no. 3, 523-535.
[18] Milin-Sipus, Z. and Divjak, B., Mappings of ruled surfaces in simply isotropic space I13 that preserve the generators. Monatsh. Math. 139
(2003), 235–245.
[19] Milin-Sipus, Z., Translation surfaces of constant curvatures in a simply isotropic space. Period. Math. Hung. 68 (2014), 160–175.
[20] Moruz, M. and Munteanu, M.I., Minimal translation hypersurfaces in E4: J. Math. Anal. Appl. 439 (2016), no. 2, 798-812.
[21] Munteanu, M.I., Palmas, O. and Ruiz-Hernandez, G., Minimal translation hypersurfaces in Euclidean spaces. Mediterranean. J. Math. 13
(2016), 2659-2676.
[22] Ogrenmis, A.O., Rotational surfaces in isotropic spaces satisfying Weingarten conditions. Open Physics 14 (2016), no. 9, 221–225.
[23] Pottmann, H., Grohs, P. and Mitra, N.J., Laguerre minimal surfaces, isotropic geometry and linear elasticity. Adv. Comput. Math. 31 (2009),
391-419.
[1] Aydin, M. and Mihai, I., On certain surfaces in the isotropic 4-space. Math. Commun. 22 (2017), no.1, 41-51.
[2] Aydin, M. and Ogrenmis, O., Homothetical and translation hypersurfaces with constant curvature in the isotropic space. BSG Proceedings
23 (2016), 1-10.
[3] Aydin, M., A generalization of translation surfaces with constant curvature in the isotropic space. J. Geom. 107 (2016), no.3, 603-615.
[4] Baba-Hamed, Ch., Bekkar, M. and Zoubir, H., Translation surfaces in the three-dimensional Lorentz-Minkowski space satisfying 4ri =
iri. Int. J. Math. Anal. 4 (2010), no. 17, 797 - 808.
[5] Bekkar, M. and Senoussi, B., Translation surfaces in the 3-dimensional space satisfying 4II ri = iri. J. Geom. 103 (2012), no.3, 367-374.
[6] Bukcu, B., Yoon, D.W. and Karacan, M.K., Translation surfaces in the 3-dimensional simply isotropic space I13
satisfying 4IIIxi = ixi. Konuralp J. Math. 4 (2016), no. 1, 275-281.
[7] Cetin, M., Tuncer, Y. and Ekmekci, N., Translation surfaces in Euclidean 3-space. Int. J. Phys. Math. Sci. 2 (2011), 49-56.
[8] Chen, B.-Y., On submanifolds of finite type. Soochow J. Math. 9 (1983), 65-81.
[9] Chen, B.-Y., Total mean curvature and submanifolds of finite type. World Scientific. Singapor-New Jersey-London, 1984.
[10] Chen, B.-Y., Decu S. and Verstraelen, L., Notes on isotropic geometry of production models. Kragujevac J. Math. 38 (2014), no. 1, 23-33.
[11] Chen, B.-Y., Some open problems and conjectures on submanifolds of finite type: recent development. Tamkang. J. Math. 45 (2014), no.1,
87-108.
[12] Dillen, F., Verstraelen, L. and Zafindratafa, G., A generalization of the translation surfaces of Scherk. Differential Geometry in Honor of
Radu Rosca: Meeting on Pure and Applied Differential Geometry, Leuven, Belgium, 1989, KU Leuven, Departement Wiskunde (1991),
pp. 107–109.
[13] Karacan, M.K., Yoon, D.W. and Bukcu, B., Translation surfaces in the three dimensional simply isotropic space I13
. Int. J. Geom. Methods Mod. Phys. 13, 1650088 (2016) (9 pages) DOI: http://dx.doi.org/10.1142/S0219887816500882.
[14] Liu, H., Translation surfaces with constant mean curvature in 3-dimensional spaces. J. Geom. 64 (1999), no. 1-2, 141–149.
[15] Liu, H. and Yu, Y., Affine translation surfaces in Euclidean 3-space. In: Proceedings of the Japan Academy, Ser. A, Mathematical Sciences 89 Ser.
A (2013), 111–113.
[16] Liu, H., Jung, S.D., Affine translation surfaces with constant mean curvature in Euclidean 3-space. J. Geom. DOI 10.1007/s00022-016-0348-
9, in press.
[17] Lopez, R. and Moruz, M., Translation and homothetical surfaces in Euclidean space with constant curvature. J. Korean Math. Soc. 52 (2015),
no. 3, 523-535.
[18] Milin-Sipus, Z. and Divjak, B., Mappings of ruled surfaces in simply isotropic space I13 that preserve the generators. Monatsh. Math. 139
(2003), 235–245.
[19] Milin-Sipus, Z., Translation surfaces of constant curvatures in a simply isotropic space. Period. Math. Hung. 68 (2014), 160–175.
[20] Moruz, M. and Munteanu, M.I., Minimal translation hypersurfaces in E4: J. Math. Anal. Appl. 439 (2016), no. 2, 798-812.
[21] Munteanu, M.I., Palmas, O. and Ruiz-Hernandez, G., Minimal translation hypersurfaces in Euclidean spaces. Mediterranean. J. Math. 13
(2016), 2659-2676.
[22] Ogrenmis, A.O., Rotational surfaces in isotropic spaces satisfying Weingarten conditions. Open Physics 14 (2016), no. 9, 221–225.
[23] Pottmann, H., Grohs, P. and Mitra, N.J., Laguerre minimal surfaces, isotropic geometry and linear elasticity. Adv. Comput. Math. 31 (2009),
391-419.
Aydin, M. E., & Ergüt, M. (2017). Affine Translation Surfaces in the Isotropic 3-Space. International Electronic Journal of Geometry, 10(1), 21-30.
AMA
Aydin ME, Ergüt M. Affine Translation Surfaces in the Isotropic 3-Space. Int. Electron. J. Geom. April 2017;10(1):21-30.
Chicago
Aydin, Muhittin Evren, and Mahmut Ergüt. “Affine Translation Surfaces in the Isotropic 3-Space”. International Electronic Journal of Geometry 10, no. 1 (April 2017): 21-30.
EndNote
Aydin ME, Ergüt M (April 1, 2017) Affine Translation Surfaces in the Isotropic 3-Space. International Electronic Journal of Geometry 10 1 21–30.
IEEE
M. E. Aydin and M. Ergüt, “Affine Translation Surfaces in the Isotropic 3-Space”, Int. Electron. J. Geom., vol. 10, no. 1, pp. 21–30, 2017.
ISNAD
Aydin, Muhittin Evren - Ergüt, Mahmut. “Affine Translation Surfaces in the Isotropic 3-Space”. International Electronic Journal of Geometry 10/1 (April 2017), 21-30.
JAMA
Aydin ME, Ergüt M. Affine Translation Surfaces in the Isotropic 3-Space. Int. Electron. J. Geom. 2017;10:21–30.
MLA
Aydin, Muhittin Evren and Mahmut Ergüt. “Affine Translation Surfaces in the Isotropic 3-Space”. International Electronic Journal of Geometry, vol. 10, no. 1, 2017, pp. 21-30.
Vancouver
Aydin ME, Ergüt M. Affine Translation Surfaces in the Isotropic 3-Space. Int. Electron. J. Geom. 2017;10(1):21-30.