[1] Anciaux, H., Minimal Submanifolds in Pseudo-Riemannian Geometry.World Scientific Publications, New Jersey, 2010.
[2] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in complex Euclidean spaces. Tohoku Math. J., 49 (1997), 277-297.
[3] Chen, B.-Y., Lagrangian Surfaces of Constant Curvature in Complex Euclidean Plane. Tohoku Math. J., 56 (2004), 289-298.
[4] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in indefinite complex Euclidean spaces. Bulletin Math. Inst. Academia Sinica
, 31 (2003), 151-179.
[5] Chen, B.-Y., Pseudo-Riemannian Geometry, -invariants and Applications. World Scientific Publications, Hackensack, New Jersey, 2011.
[6] Chen, B.-Y., A Construction Method of Lagrangian Surfaces in Complex Pseudo Euclidean Plane C^2_1
and its Applications. Int. Electron. J.Geom., 7 (2014), 4-25.
[7] Chen, B.-Y. and Fastenakels, J., Classification of Flat Lagrangianl Surfaces in Complex Lorentzian Plane. Acta Mathematica Sinica, 23 (2007),
No.12 , 2111-2144.
[8] Chen, B.-Y. and Ogiue, K., Two theorems on Kaehler manifolds. Michigan Math. J., 21 (1974), 225-229.
[9] Deng, S., Lagrangian H-umbilical Surfaces in Complex Lorentzian Plane. Int. Electron. J. Geom., 9 (2016), No. 2 , 87-93.
[10] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York, 1983.
[11] Yano, K. and Kon, M., Structures on manifolds. Series in Pure Mathematics, 3.World Scientific Publishing Co., Singapore, 1984.
Af
Year 2017,
Volume: 10 Issue: 1, 48 - 57, 30.04.2017
[1] Anciaux, H., Minimal Submanifolds in Pseudo-Riemannian Geometry.World Scientific Publications, New Jersey, 2010.
[2] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in complex Euclidean spaces. Tohoku Math. J., 49 (1997), 277-297.
[3] Chen, B.-Y., Lagrangian Surfaces of Constant Curvature in Complex Euclidean Plane. Tohoku Math. J., 56 (2004), 289-298.
[4] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in indefinite complex Euclidean spaces. Bulletin Math. Inst. Academia Sinica
, 31 (2003), 151-179.
[5] Chen, B.-Y., Pseudo-Riemannian Geometry, -invariants and Applications. World Scientific Publications, Hackensack, New Jersey, 2011.
[6] Chen, B.-Y., A Construction Method of Lagrangian Surfaces in Complex Pseudo Euclidean Plane C^2_1
and its Applications. Int. Electron. J.Geom., 7 (2014), 4-25.
[7] Chen, B.-Y. and Fastenakels, J., Classification of Flat Lagrangianl Surfaces in Complex Lorentzian Plane. Acta Mathematica Sinica, 23 (2007),
No.12 , 2111-2144.
[8] Chen, B.-Y. and Ogiue, K., Two theorems on Kaehler manifolds. Michigan Math. J., 21 (1974), 225-229.
[9] Deng, S., Lagrangian H-umbilical Surfaces in Complex Lorentzian Plane. Int. Electron. J. Geom., 9 (2016), No. 2 , 87-93.
[10] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York, 1983.
[11] Yano, K. and Kon, M., Structures on manifolds. Series in Pure Mathematics, 3.World Scientific Publishing Co., Singapore, 1984.
Af
Deng, S. (2017). Classification of Lagrangian H-umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane. International Electronic Journal of Geometry, 10(1), 48-57.
AMA
Deng S. Classification of Lagrangian H-umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane. Int. Electron. J. Geom. April 2017;10(1):48-57.
Chicago
Deng, Shangrong. “Classification of Lagrangian H-Umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane”. International Electronic Journal of Geometry 10, no. 1 (April 2017): 48-57.
EndNote
Deng S (April 1, 2017) Classification of Lagrangian H-umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane. International Electronic Journal of Geometry 10 1 48–57.
IEEE
S. Deng, “Classification of Lagrangian H-umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane”, Int. Electron. J. Geom., vol. 10, no. 1, pp. 48–57, 2017.
ISNAD
Deng, Shangrong. “Classification of Lagrangian H-Umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane”. International Electronic Journal of Geometry 10/1 (April 2017), 48-57.
JAMA
Deng S. Classification of Lagrangian H-umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane. Int. Electron. J. Geom. 2017;10:48–57.
MLA
Deng, Shangrong. “Classification of Lagrangian H-Umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane”. International Electronic Journal of Geometry, vol. 10, no. 1, 2017, pp. 48-57.
Vancouver
Deng S. Classification of Lagrangian H-umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane. Int. Electron. J. Geom. 2017;10(1):48-57.