[1] Cambie, S., Goemans, W. and Van den Bussche, I., Rectifying curves in the n-dimensional
Euclidean space. Turkish J. Math., 40 (2016), no.1, 210-223.
[2] Chen, B.-Y., Geometry of position functions of Riemannian submanifolds in pseudo-Euclidean
space, J. Geom., 74 (2002), 61-77.
[3] Chen, B.-Y., When does the position vector of a space curve always lie in its rectifying
plane? Amer. Math. Monthly, 110 (2003), no. 2, 147–152.
[4] Chen, B.-Y., Constant-ratio space-like submanifolds in pseudo-Euclidean space. Houston J.
Math., 29 (2003), no. 2, 281-294. [5] Chen, B.-Y., Riemannian geometry, δ-invariants and
applications. World Scientific, Hackensack, NJ, 2011.
[6] Chen, B.-Y., Differential geometry of rectifying submanifolds. Int. Electron. J. Geom., 9
(2016), no. 2, 1-8.
[7] Chen, B.-Y., Addendum to : Differential geometry of rectifying submanifolds. Int. Electron. J.
Geom., 10 (2017), no. 1, 81-82.
[8] Chen, B.-Y., Differential geometry of warped product manifolds
and submanifolds. World Scientific, Hackensack, NJ, 2017.
[9] Chen, B.-Y., Rectifying curves and geodesics on a cone in the Euclidean 3-space. Tamkang J. Math., 48 (2017) (to appear).
[10] Chen, B.-Y. and Dillen, F., Rectifying curves as centrodes and extremal curves. Bull. Inst.
Math. Acad. Sinica 33 (2005), no. 2, 77-90.
[11] Kim, D.-S., Chung, H.-S. and Cho, K.-H., Space curves satisfying τ/κ = as + b. Honam Math. J., 15 (1993), 1-9.
[12] Hiepko, S., Eine innere Kennzeichnung der verzerrten Produkte. Math. Ann. , 241 (1979), no.
3, 209-215.
[13] Ilarslan, K., Nesovic, E. and Petrovic-Torgasev, M., Some characterizations of rectifying
curves in the Minkowski 3-space. Novi Sad J. Math., 33 (2003), no. 2, 23-32.
[14] Ilarslan, K. and Nesovic, E., On rectifying curves as centrodes and extremal curves in the
Minkowski 3-space. Novi Sad J. Math. 37 (2007), no. 1, 53-64.
[15] Ilarslan, K. and Nesovic, E., Some relations between normal and rectifying curves in
Minkowski space-time. Int. Electron. J. Geom. 7 (2014), no. 1, 26-35.
[16] O’Neill, B., Semi-Riemannian geometry with applications to relativity. Academic Press, New
York, 1983.
Year 2017,
Volume: 10 Issue: 1, 86 - 95, 30.04.2017
[1] Cambie, S., Goemans, W. and Van den Bussche, I., Rectifying curves in the n-dimensional
Euclidean space. Turkish J. Math., 40 (2016), no.1, 210-223.
[2] Chen, B.-Y., Geometry of position functions of Riemannian submanifolds in pseudo-Euclidean
space, J. Geom., 74 (2002), 61-77.
[3] Chen, B.-Y., When does the position vector of a space curve always lie in its rectifying
plane? Amer. Math. Monthly, 110 (2003), no. 2, 147–152.
[4] Chen, B.-Y., Constant-ratio space-like submanifolds in pseudo-Euclidean space. Houston J.
Math., 29 (2003), no. 2, 281-294. [5] Chen, B.-Y., Riemannian geometry, δ-invariants and
applications. World Scientific, Hackensack, NJ, 2011.
[6] Chen, B.-Y., Differential geometry of rectifying submanifolds. Int. Electron. J. Geom., 9
(2016), no. 2, 1-8.
[7] Chen, B.-Y., Addendum to : Differential geometry of rectifying submanifolds. Int. Electron. J.
Geom., 10 (2017), no. 1, 81-82.
[8] Chen, B.-Y., Differential geometry of warped product manifolds
and submanifolds. World Scientific, Hackensack, NJ, 2017.
[9] Chen, B.-Y., Rectifying curves and geodesics on a cone in the Euclidean 3-space. Tamkang J. Math., 48 (2017) (to appear).
[10] Chen, B.-Y. and Dillen, F., Rectifying curves as centrodes and extremal curves. Bull. Inst.
Math. Acad. Sinica 33 (2005), no. 2, 77-90.
[11] Kim, D.-S., Chung, H.-S. and Cho, K.-H., Space curves satisfying τ/κ = as + b. Honam Math. J., 15 (1993), 1-9.
[12] Hiepko, S., Eine innere Kennzeichnung der verzerrten Produkte. Math. Ann. , 241 (1979), no.
3, 209-215.
[13] Ilarslan, K., Nesovic, E. and Petrovic-Torgasev, M., Some characterizations of rectifying
curves in the Minkowski 3-space. Novi Sad J. Math., 33 (2003), no. 2, 23-32.
[14] Ilarslan, K. and Nesovic, E., On rectifying curves as centrodes and extremal curves in the
Minkowski 3-space. Novi Sad J. Math. 37 (2007), no. 1, 53-64.
[15] Ilarslan, K. and Nesovic, E., Some relations between normal and rectifying curves in
Minkowski space-time. Int. Electron. J. Geom. 7 (2014), no. 1, 26-35.
[16] O’Neill, B., Semi-Riemannian geometry with applications to relativity. Academic Press, New
York, 1983.
Chen, B.-y., & Oh, Y. M. (2017). Classification of Rectifying Space-Like Submanifolds in Pseudo-Euclidean Spaces. International Electronic Journal of Geometry, 10(1), 86-95. https://doi.org/10.36890/iejg.584447
AMA
Chen By, Oh YM. Classification of Rectifying Space-Like Submanifolds in Pseudo-Euclidean Spaces. Int. Electron. J. Geom. April 2017;10(1):86-95. doi:10.36890/iejg.584447
Chicago
Chen, Bang-yen, and Yun Myung Oh. “Classification of Rectifying Space-Like Submanifolds in Pseudo-Euclidean Spaces”. International Electronic Journal of Geometry 10, no. 1 (April 2017): 86-95. https://doi.org/10.36890/iejg.584447.
EndNote
Chen B-y, Oh YM (April 1, 2017) Classification of Rectifying Space-Like Submanifolds in Pseudo-Euclidean Spaces. International Electronic Journal of Geometry 10 1 86–95.
IEEE
B.-y. Chen and Y. M. Oh, “Classification of Rectifying Space-Like Submanifolds in Pseudo-Euclidean Spaces”, Int. Electron. J. Geom., vol. 10, no. 1, pp. 86–95, 2017, doi: 10.36890/iejg.584447.
ISNAD
Chen, Bang-yen - Oh, Yun Myung. “Classification of Rectifying Space-Like Submanifolds in Pseudo-Euclidean Spaces”. International Electronic Journal of Geometry 10/1 (April 2017), 86-95. https://doi.org/10.36890/iejg.584447.
JAMA
Chen B-y, Oh YM. Classification of Rectifying Space-Like Submanifolds in Pseudo-Euclidean Spaces. Int. Electron. J. Geom. 2017;10:86–95.
MLA
Chen, Bang-yen and Yun Myung Oh. “Classification of Rectifying Space-Like Submanifolds in Pseudo-Euclidean Spaces”. International Electronic Journal of Geometry, vol. 10, no. 1, 2017, pp. 86-95, doi:10.36890/iejg.584447.
Vancouver
Chen B-y, Oh YM. Classification of Rectifying Space-Like Submanifolds in Pseudo-Euclidean Spaces. Int. Electron. J. Geom. 2017;10(1):86-95.