Araştırma Makalesi
BibTex RIS Kaynak Göster

TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE

Yıl 2015, Cilt: 8 Sayı: 1, 116 - 127, 30.04.2015
https://doi.org/10.36890/iejg.592804

Öz


Kaynakça

  • [1] Arfken, G., Mathematical Methods for Physicists, 3rd Edition, Academic Press, 1985.
  • [2] Hawking, S. W. and Ellis, G. F. R., The Large Scale Structure of Space-Time, Cambridge University Press, 1973.
  • [3] Blaine Lawson, H. Jr., Complete minimal surfaces in S3, Ann. of Math. 92 (1970), 335–374.
  • [4] Lee, S., Timelike surfaces of constant mean curvature ±1 in anti-de Sitter 3-space H3(−1), Ann. Global Anal. Geom. 29 (2006), no. 4, 361–407.
  • [5] Lee, S. and Varnado, J. H., Timelike surfaces of revolution with constant mean curvature in Minkowski 3-space, Differential Geometry and Dynamical Systems 9 (2007), No. 1, 82–102.
  • [6] Lee, S. and Zarske, K., Surfaces of Revolution with Constant Mean Curvature in Hyperbolic 3-Space, Differential Geometry - Dynamical Systems 16 (2014), 203-218.
  • [7] O’Neill, B., Elementary Differential Geometry, Academic Press, 1967.
Yıl 2015, Cilt: 8 Sayı: 1, 116 - 127, 30.04.2015
https://doi.org/10.36890/iejg.592804

Öz

Kaynakça

  • [1] Arfken, G., Mathematical Methods for Physicists, 3rd Edition, Academic Press, 1985.
  • [2] Hawking, S. W. and Ellis, G. F. R., The Large Scale Structure of Space-Time, Cambridge University Press, 1973.
  • [3] Blaine Lawson, H. Jr., Complete minimal surfaces in S3, Ann. of Math. 92 (1970), 335–374.
  • [4] Lee, S., Timelike surfaces of constant mean curvature ±1 in anti-de Sitter 3-space H3(−1), Ann. Global Anal. Geom. 29 (2006), no. 4, 361–407.
  • [5] Lee, S. and Varnado, J. H., Timelike surfaces of revolution with constant mean curvature in Minkowski 3-space, Differential Geometry and Dynamical Systems 9 (2007), No. 1, 82–102.
  • [6] Lee, S. and Zarske, K., Surfaces of Revolution with Constant Mean Curvature in Hyperbolic 3-Space, Differential Geometry - Dynamical Systems 16 (2014), 203-218.
  • [7] O’Neill, B., Elementary Differential Geometry, Academic Press, 1967.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Sungwook Lee Bu kişi benim

Jacob Martın Bu kişi benim

Yayımlanma Tarihi 30 Nisan 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 8 Sayı: 1

Kaynak Göster

APA Lee, S., & Martın, J. (2015). TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE. International Electronic Journal of Geometry, 8(1), 116-127. https://doi.org/10.36890/iejg.592804
AMA Lee S, Martın J. TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE. Int. Electron. J. Geom. Nisan 2015;8(1):116-127. doi:10.36890/iejg.592804
Chicago Lee, Sungwook, ve Jacob Martın. “TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE”. International Electronic Journal of Geometry 8, sy. 1 (Nisan 2015): 116-27. https://doi.org/10.36890/iejg.592804.
EndNote Lee S, Martın J (01 Nisan 2015) TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE. International Electronic Journal of Geometry 8 1 116–127.
IEEE S. Lee ve J. Martın, “TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE”, Int. Electron. J. Geom., c. 8, sy. 1, ss. 116–127, 2015, doi: 10.36890/iejg.592804.
ISNAD Lee, Sungwook - Martın, Jacob. “TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE”. International Electronic Journal of Geometry 8/1 (Nisan 2015), 116-127. https://doi.org/10.36890/iejg.592804.
JAMA Lee S, Martın J. TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE. Int. Electron. J. Geom. 2015;8:116–127.
MLA Lee, Sungwook ve Jacob Martın. “TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE”. International Electronic Journal of Geometry, c. 8, sy. 1, 2015, ss. 116-27, doi:10.36890/iejg.592804.
Vancouver Lee S, Martın J. TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE. Int. Electron. J. Geom. 2015;8(1):116-27.