[1] Belkhelfa, M., Dillen, F. and Inoguchi, J.-I., Surfaces with parallel second fundamental form
in Bianchi-Cartan-Vranceanu spaces, in ”PDEs, submanifolds and affine differential geometry”
(Warsaw, 2000), 67-87, Banach Center Publ., 57, Polish Acad. Sci., Warsaw, 2002.
[2] Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Second
edition.Progress in Mathematics, 203. Birkh¨auser Boston, Inc., Boston, MA, 2010.
[3] Caddeo, R., Montaldo, S., Oniciuc, C. and Piu, P., The classification of biharmonic curves of
Cartan-Vranceanu 3-dimensional spaces, in ”Modern trends in geometry and topology”, 121-131, Cluj
Univ. Press, Cluj-Napoca, 2006.
[4] Calvaruso, G., Three-dimensional homogeneous almost contact metric structures, J. Geom.
Phys., 69(2013), 60-73.
[5] Chern S. S. and Hamilton, R. S., On Riemannian metrics adapted to three-dimensional contact
manifolds, With an appendix by Alan Weinstein. Lecture Notes in Math., 1111, Workshop Bonn 1984,
279-308, Springer, Berlin, 1985.
[6] Cho, J. T., Inoguchi J.-I. and Lee, J.-E., On slant curves in Sasakian 3-manifolds, Bull.
Austral. Math. Soc., 74(2006), no. 3, 359-367.
[7] Cho, J. T. and Kon, M., The Tanaka-Webster connection and real hypersurfaces in a complex space
form, Kodai Math. J., 34(2011), no. 3, 474-484.
[8] Chow, B., Lu, P. and Ni, L., Hamilton’s Ricci flow, Graduate Studies in Mathematics, 77,
American Mathematical Society, Providence, RI; Science Press, New York, 2006.
[9] Dragomir, S. and Perrone, D., Harmonic vector fields. Variational principles and differential
geometry, Amsterdam, Elsevier, 2012.
[10] Fastenakels, J., Munteanu, M. I. and Van Der Veken, J., Constant angle surfaces in the
Heisenberg group, Acta Math. Sin. (Engl. Ser.), 27(2011), no. 4, 747-756.
[11] Lee, H., Extensions of the duality between minimal surfaces and maximal surfaces, Geom.
Dedicata, 151(2011), 373-386.
[12] McMullen, C. T., The evolution of geometric structures on 3-manifolds, Bull. Amer. Math.
Soc., 48(2011), no. 2, 259-274.
[13] Milnor, J., Curvatures of left invariant metrics on Lie groups, Advances in Math., 21(1976),
no. 3, 293-329.
[14] Nicolaescu, L. I., Adiabatic limits of the Seiberg-Witten equations on Seifert manifolds,
Comm. Anal. Geom., 6(1998), no. 2, 331-392.
[15] Ou, Y.-L. and Wang, Z.-P., Constant mean curvature and totally umbilical biharmonic sur- faces
in 3-dimensional geometries, J. Geom. Phys., 61(2011), no. 10, 1845-1853.
[16] Perrone, D., Homogeneous contact Riemannian three-manifolds, Illinois J. Math., 42 (1998), no.
2, 243-256.
[17] Van der Veken, J., Higher order parallel surfaces in Bianchi-Cartan-Vranceanu spaces, Results
Math., 51(2008) no. 3-4 339-359.
ADAPTED METRICS AND WEBSTER CURVATURE ON THREE CLASSES OF 3-DIMENSIONAL GEOMETRIES
Year 2014,
Volume: 7 Issue: 2, 37 - 46, 30.10.2014
[1] Belkhelfa, M., Dillen, F. and Inoguchi, J.-I., Surfaces with parallel second fundamental form
in Bianchi-Cartan-Vranceanu spaces, in ”PDEs, submanifolds and affine differential geometry”
(Warsaw, 2000), 67-87, Banach Center Publ., 57, Polish Acad. Sci., Warsaw, 2002.
[2] Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Second
edition.Progress in Mathematics, 203. Birkh¨auser Boston, Inc., Boston, MA, 2010.
[3] Caddeo, R., Montaldo, S., Oniciuc, C. and Piu, P., The classification of biharmonic curves of
Cartan-Vranceanu 3-dimensional spaces, in ”Modern trends in geometry and topology”, 121-131, Cluj
Univ. Press, Cluj-Napoca, 2006.
[4] Calvaruso, G., Three-dimensional homogeneous almost contact metric structures, J. Geom.
Phys., 69(2013), 60-73.
[5] Chern S. S. and Hamilton, R. S., On Riemannian metrics adapted to three-dimensional contact
manifolds, With an appendix by Alan Weinstein. Lecture Notes in Math., 1111, Workshop Bonn 1984,
279-308, Springer, Berlin, 1985.
[6] Cho, J. T., Inoguchi J.-I. and Lee, J.-E., On slant curves in Sasakian 3-manifolds, Bull.
Austral. Math. Soc., 74(2006), no. 3, 359-367.
[7] Cho, J. T. and Kon, M., The Tanaka-Webster connection and real hypersurfaces in a complex space
form, Kodai Math. J., 34(2011), no. 3, 474-484.
[8] Chow, B., Lu, P. and Ni, L., Hamilton’s Ricci flow, Graduate Studies in Mathematics, 77,
American Mathematical Society, Providence, RI; Science Press, New York, 2006.
[9] Dragomir, S. and Perrone, D., Harmonic vector fields. Variational principles and differential
geometry, Amsterdam, Elsevier, 2012.
[10] Fastenakels, J., Munteanu, M. I. and Van Der Veken, J., Constant angle surfaces in the
Heisenberg group, Acta Math. Sin. (Engl. Ser.), 27(2011), no. 4, 747-756.
[11] Lee, H., Extensions of the duality between minimal surfaces and maximal surfaces, Geom.
Dedicata, 151(2011), 373-386.
[12] McMullen, C. T., The evolution of geometric structures on 3-manifolds, Bull. Amer. Math.
Soc., 48(2011), no. 2, 259-274.
[13] Milnor, J., Curvatures of left invariant metrics on Lie groups, Advances in Math., 21(1976),
no. 3, 293-329.
[14] Nicolaescu, L. I., Adiabatic limits of the Seiberg-Witten equations on Seifert manifolds,
Comm. Anal. Geom., 6(1998), no. 2, 331-392.
[15] Ou, Y.-L. and Wang, Z.-P., Constant mean curvature and totally umbilical biharmonic sur- faces
in 3-dimensional geometries, J. Geom. Phys., 61(2011), no. 10, 1845-1853.
[16] Perrone, D., Homogeneous contact Riemannian three-manifolds, Illinois J. Math., 42 (1998), no.
2, 243-256.
[17] Van der Veken, J., Higher order parallel surfaces in Bianchi-Cartan-Vranceanu spaces, Results
Math., 51(2008) no. 3-4 339-359.
Crasmareanu, M. (2014). ADAPTED METRICS AND WEBSTER CURVATURE ON THREE CLASSES OF 3-DIMENSIONAL GEOMETRIES. International Electronic Journal of Geometry, 7(2), 37-46. https://doi.org/10.36890/iejg.593981
AMA
Crasmareanu M. ADAPTED METRICS AND WEBSTER CURVATURE ON THREE CLASSES OF 3-DIMENSIONAL GEOMETRIES. Int. Electron. J. Geom. October 2014;7(2):37-46. doi:10.36890/iejg.593981
Chicago
Crasmareanu, Mircea. “ADAPTED METRICS AND WEBSTER CURVATURE ON THREE CLASSES OF 3-DIMENSIONAL GEOMETRIES”. International Electronic Journal of Geometry 7, no. 2 (October 2014): 37-46. https://doi.org/10.36890/iejg.593981.
EndNote
Crasmareanu M (October 1, 2014) ADAPTED METRICS AND WEBSTER CURVATURE ON THREE CLASSES OF 3-DIMENSIONAL GEOMETRIES. International Electronic Journal of Geometry 7 2 37–46.
IEEE
M. Crasmareanu, “ADAPTED METRICS AND WEBSTER CURVATURE ON THREE CLASSES OF 3-DIMENSIONAL GEOMETRIES”, Int. Electron. J. Geom., vol. 7, no. 2, pp. 37–46, 2014, doi: 10.36890/iejg.593981.
ISNAD
Crasmareanu, Mircea. “ADAPTED METRICS AND WEBSTER CURVATURE ON THREE CLASSES OF 3-DIMENSIONAL GEOMETRIES”. International Electronic Journal of Geometry 7/2 (October 2014), 37-46. https://doi.org/10.36890/iejg.593981.
JAMA
Crasmareanu M. ADAPTED METRICS AND WEBSTER CURVATURE ON THREE CLASSES OF 3-DIMENSIONAL GEOMETRIES. Int. Electron. J. Geom. 2014;7:37–46.
MLA
Crasmareanu, Mircea. “ADAPTED METRICS AND WEBSTER CURVATURE ON THREE CLASSES OF 3-DIMENSIONAL GEOMETRIES”. International Electronic Journal of Geometry, vol. 7, no. 2, 2014, pp. 37-46, doi:10.36890/iejg.593981.
Vancouver
Crasmareanu M. ADAPTED METRICS AND WEBSTER CURVATURE ON THREE CLASSES OF 3-DIMENSIONAL GEOMETRIES. Int. Electron. J. Geom. 2014;7(2):37-46.