Araştırma Makalesi
BibTex RIS Kaynak Göster

E-BOCHNER CURVATURE TENSOR ON ( κ , µ)-CONTACT METRIC MANIFOLDS

Yıl 2014, Cilt: 7 Sayı: 1, 143 - 153, 30.04.2014
https://doi.org/10.36890/iejg.594505

Öz

Kaynakça

  • [1] Arslan, K., Ezentas, R., Mihai, I., Murthan, C. and O¨ zgu¨r, C., Certain inequalities for submanifolds in (κ, µ)-contact space forms, Bull. Austral. Soc., 64(2001), 201-212.
  • [2] Blair, D.E, Contact manifolds in Reimannian geometry, Lecture notes in Math., 509, Springer-verlag., 1976.
  • [3] Blair, D.E, Koufogiorgos T. and Papantoniou B.J., Contact metric manifold satisfying a nullity condition, Israel J.Math. 91(1995), 189-214.
  • [4] Blair, D.E, Two remarks on contact metric structures, Tohoku Math. J. 29(1977), 319-324.
  • [5] Bochner, S., Curvature and Betti number, Ann. of Math., 50(1949), 77-93 .
  • [6] Boeckx, E., A full classificstion of contact metric (κ, µ)-spaces, Illinois J.Math. 44(2000), 212-219 .
  • [7] Boothby, W.M. and Wang, H.C.,On contact manifolds, Annals of Math., 68(1958), 721-734 .
  • [8] De, U.C and Sarkar, A., On Quasi-conformal curvature tensor of (κ, µ)-contact metric manifold, Math. Reports 14(64), (2012), 115-129.
  • [9] Endo, H., On K-contact Reimannian manifolds with vanishing E-contact Bochner curvature tensor, Colloq.Math. 62(1991), 293-297.
  • [10] Ghosh,S. and De, U.C, On a class of (κ, µ)-contact metric manifolds, Analele Universitˇatii Oradea Fasc. Mathematica, Tom. 19(2012), 231-242.
  • [11] Ghosh, S. and De, U.C., On φ-Quasiconformally symmetric (κ, µ)-contact metric manifolds, Lobachevskii Journal of Mathematics, 31(2010), 367-375.
  • [12] Jun, J.B., Yildiz, A. and De, U.C.,On φ-recurrent (κ, µ)-contact metric manifolds, Bull. Korean Math. Soc. 45(4), 689(2008).
  • [13] Kim, J.S, Tripathi, M.M. and Choi, J.D, On C-Bochner curvature tensor of a contact metric manifold, Bull. Korean Math. Soc. 42(2005), 713-724.
  • [14] Kowalski, O., An explicit classification of 3-dimensional Reimannian spaces satisfying R(X, Y ) · R = 0, Czecchoslovak Math. J. 46(121) (1996), 427-474.
  • [15] Matsumoto, M. and Chuman, G., On C-Bochner curvature tensor, TRU Math., 5(1969), 21-30.
  • [16] Özgür, C., Contact metric manifolds with cyclic-parallel Ricci tensor, Diff. Geom. Dynamical systems, 4(2000), 21-25.
  • [17] Papantoniou, B.J., Contact Remannian manifolds satisfying R(ξ, X) · R = 0 and ξ ∈ (κ, µ)- nullity distribution, Yokohama Math.J., 40(1993), 149-161.
  • [18] Szabo, Z.I., Structure theorems on Reimannian spaces satisfying R(X, Y ) · R = 0. I. The local version, J. Differential Geom. 17(1982), 531-582.
  • [19] Tanno, S., Ricci curvatures of contact Reimannian manifolds, Tˆˆohoku Math. J., 40(1988), 441-448.
  • [20] Yildiz, A., De, U.C, A classification of (κ, µ)-contact matric manifold, Commun. Korean Soc. 27(2012), 327-339.Soc. 27(2012), 327-339.
Yıl 2014, Cilt: 7 Sayı: 1, 143 - 153, 30.04.2014
https://doi.org/10.36890/iejg.594505

Öz

Kaynakça

  • [1] Arslan, K., Ezentas, R., Mihai, I., Murthan, C. and O¨ zgu¨r, C., Certain inequalities for submanifolds in (κ, µ)-contact space forms, Bull. Austral. Soc., 64(2001), 201-212.
  • [2] Blair, D.E, Contact manifolds in Reimannian geometry, Lecture notes in Math., 509, Springer-verlag., 1976.
  • [3] Blair, D.E, Koufogiorgos T. and Papantoniou B.J., Contact metric manifold satisfying a nullity condition, Israel J.Math. 91(1995), 189-214.
  • [4] Blair, D.E, Two remarks on contact metric structures, Tohoku Math. J. 29(1977), 319-324.
  • [5] Bochner, S., Curvature and Betti number, Ann. of Math., 50(1949), 77-93 .
  • [6] Boeckx, E., A full classificstion of contact metric (κ, µ)-spaces, Illinois J.Math. 44(2000), 212-219 .
  • [7] Boothby, W.M. and Wang, H.C.,On contact manifolds, Annals of Math., 68(1958), 721-734 .
  • [8] De, U.C and Sarkar, A., On Quasi-conformal curvature tensor of (κ, µ)-contact metric manifold, Math. Reports 14(64), (2012), 115-129.
  • [9] Endo, H., On K-contact Reimannian manifolds with vanishing E-contact Bochner curvature tensor, Colloq.Math. 62(1991), 293-297.
  • [10] Ghosh,S. and De, U.C, On a class of (κ, µ)-contact metric manifolds, Analele Universitˇatii Oradea Fasc. Mathematica, Tom. 19(2012), 231-242.
  • [11] Ghosh, S. and De, U.C., On φ-Quasiconformally symmetric (κ, µ)-contact metric manifolds, Lobachevskii Journal of Mathematics, 31(2010), 367-375.
  • [12] Jun, J.B., Yildiz, A. and De, U.C.,On φ-recurrent (κ, µ)-contact metric manifolds, Bull. Korean Math. Soc. 45(4), 689(2008).
  • [13] Kim, J.S, Tripathi, M.M. and Choi, J.D, On C-Bochner curvature tensor of a contact metric manifold, Bull. Korean Math. Soc. 42(2005), 713-724.
  • [14] Kowalski, O., An explicit classification of 3-dimensional Reimannian spaces satisfying R(X, Y ) · R = 0, Czecchoslovak Math. J. 46(121) (1996), 427-474.
  • [15] Matsumoto, M. and Chuman, G., On C-Bochner curvature tensor, TRU Math., 5(1969), 21-30.
  • [16] Özgür, C., Contact metric manifolds with cyclic-parallel Ricci tensor, Diff. Geom. Dynamical systems, 4(2000), 21-25.
  • [17] Papantoniou, B.J., Contact Remannian manifolds satisfying R(ξ, X) · R = 0 and ξ ∈ (κ, µ)- nullity distribution, Yokohama Math.J., 40(1993), 149-161.
  • [18] Szabo, Z.I., Structure theorems on Reimannian spaces satisfying R(X, Y ) · R = 0. I. The local version, J. Differential Geom. 17(1982), 531-582.
  • [19] Tanno, S., Ricci curvatures of contact Reimannian manifolds, Tˆˆohoku Math. J., 40(1988), 441-448.
  • [20] Yildiz, A., De, U.C, A classification of (κ, µ)-contact matric manifold, Commun. Korean Soc. 27(2012), 327-339.Soc. 27(2012), 327-339.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Uday Chand De Bu kişi benim

Srimayee Samuı Bu kişi benim

Yayımlanma Tarihi 30 Nisan 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 7 Sayı: 1

Kaynak Göster

APA Chand De, U., & Samuı, S. (2014). E-BOCHNER CURVATURE TENSOR ON ( κ , µ)-CONTACT METRIC MANIFOLDS. International Electronic Journal of Geometry, 7(1), 143-153. https://doi.org/10.36890/iejg.594505
AMA Chand De U, Samuı S. E-BOCHNER CURVATURE TENSOR ON ( κ , µ)-CONTACT METRIC MANIFOLDS. Int. Electron. J. Geom. Nisan 2014;7(1):143-153. doi:10.36890/iejg.594505
Chicago Chand De, Uday, ve Srimayee Samuı. “E-BOCHNER CURVATURE TENSOR ON ( κ , )-CONTACT METRIC MANIFOLDS”. International Electronic Journal of Geometry 7, sy. 1 (Nisan 2014): 143-53. https://doi.org/10.36890/iejg.594505.
EndNote Chand De U, Samuı S (01 Nisan 2014) E-BOCHNER CURVATURE TENSOR ON ( κ , µ)-CONTACT METRIC MANIFOLDS. International Electronic Journal of Geometry 7 1 143–153.
IEEE U. Chand De ve S. Samuı, “E-BOCHNER CURVATURE TENSOR ON ( κ , µ)-CONTACT METRIC MANIFOLDS”, Int. Electron. J. Geom., c. 7, sy. 1, ss. 143–153, 2014, doi: 10.36890/iejg.594505.
ISNAD Chand De, Uday - Samuı, Srimayee. “E-BOCHNER CURVATURE TENSOR ON ( κ , )-CONTACT METRIC MANIFOLDS”. International Electronic Journal of Geometry 7/1 (Nisan 2014), 143-153. https://doi.org/10.36890/iejg.594505.
JAMA Chand De U, Samuı S. E-BOCHNER CURVATURE TENSOR ON ( κ , µ)-CONTACT METRIC MANIFOLDS. Int. Electron. J. Geom. 2014;7:143–153.
MLA Chand De, Uday ve Srimayee Samuı. “E-BOCHNER CURVATURE TENSOR ON ( κ , )-CONTACT METRIC MANIFOLDS”. International Electronic Journal of Geometry, c. 7, sy. 1, 2014, ss. 143-5, doi:10.36890/iejg.594505.
Vancouver Chand De U, Samuı S. E-BOCHNER CURVATURE TENSOR ON ( κ , µ)-CONTACT METRIC MANIFOLDS. Int. Electron. J. Geom. 2014;7(1):143-5.